Computer architecture: Difference between revisions

Content deleted Content added
Swarcher (talk | contribs)
Power efficiency: Added "clarification needed" tag. Reason: these two consecutive sentences seem to contradict each other.
Line 91:
Power efficiency is another important measurement in modern computers. Higher power efficiency can often be traded for lower speed or higher cost. The typical measurement when referring to power consumption in computer architecture is MIPS/W (millions of instructions per second per watt).
 
Modern circuits have less power required per [[transistor]] as the number of transistors per chip grows.<ref>{{Cite web|url=http://eacharya.inflibnet.ac.in/data-server/eacharya-documents/53e0c6cbe413016f23443704_INFIEP_33/192/ET/33-192-ET-V1-S1__ssed_unit_4_module_10_integrated_circuits_and_fabrication_e-text.pdf|title=Integrated circuits and fabrication|access-date=8 May 2017}}</ref> This is because each transistor that is put in a new chip requires its own power supply and requires new pathways to be built to power it.{{Clarify|reason=The last two sentences seem to contradict each other|date=March 2025}} However, the number of transistors per chip is starting to increase at a slower rate. Therefore, power efficiency is starting to become as important, if not more important than fitting more and more transistors into a single chip. Recent processor designs have shown this emphasis as they put more focus on power efficiency rather than cramming as many transistors into a single chip as possible.<ref>{{Cite web|url=http://www.samsung.com/semiconductor/minisite/Exynos/w/solution/mod_ap/8895/?CID=AFL-hq-mul-0813-11000170|title=Exynos 9 Series (8895)|website=Samsung|access-date=8 May 2017}}</ref> In the world of [[embedded computers]], power efficiency has long been an important goal next to throughput and latency.
 
===Shifts in market demand===