Content deleted Content added
Use template val in a few more places |
No edit summary |
||
Line 12:
Entropy does not increase indefinitely. A body of matter and radiation eventually will reach an unchanging state, with no detectable flows, and is then said to be in a state of [[thermodynamic equilibrium]]. Thermodynamic entropy has a definite value for such a body and is at its maximum value. When bodies of matter or radiation, initially in their own states of internal thermodynamic equilibrium, are brought together so as to intimately interact and reach a new joint equilibrium, then their total entropy increases. For example, a glass of warm water with an ice cube in it will have a lower entropy than that same system some time later when the ice has melted leaving a glass of cool water. Such processes are irreversible: A glass of cool water will not [[Spontaneous process|spontaneously]] turn into a glass of warm water with an ice cube in it. Some processes in nature are almost reversible. For example, the orbiting of the planets around the Sun may be thought of as practically reversible: A movie of the planets orbiting the Sun which is run in reverse would not appear to be impossible.
While the second law, and thermodynamics in general, accurately predicts the intimate interactions of complex physical systems, scientists are not content with simply knowing how a system behaves, they also want to know ''why'' it behaves the way it does. The question of why entropy increases until equilibrium is reached was answered in 1877 by physicist [[Ludwig Boltzmann]]. The theory developed by Boltzmann and others
== Explanation ==
|