Scikit-learn: Difference between revisions

Content deleted Content added
Add a "Features" section
Start "Examples" section
Line 69:
* Consistent way of running machine learning models ({{code|estimator.fit()|python}} and {{code|estimator.predict()|python}}), which libraries can implement
* Declarative way of structuring a data science process (the {{Code|Pipeline|Python}}), including data pre-processing and model fitting
 
== Examples ==
Fitting a [[Random forest|random forest classifier]]:<syntaxhighlight lang="python3" line="1">
>>> from sklearn.ensemble import RandomForestClassifier
>>> classifier = RandomForestClassifier(random_state=0)
>>> X = [[ 1, 2, 3], # 2 samples, 3 features
... [11, 12, 13]]
>>> y = [0, 1] # classes of each sample
>>> classifier.fit(X, y)
RandomForestClassifier(random_state=0)
</syntaxhighlight>
 
==Implementation==
Line 114 ⟶ 125:
* [[Infer.NET]]
* [[List of numerical analysis software]]
 
==References==
{{Reflist|30em}}