Optical flow: Difference between revisions

Content deleted Content added
m Removed excess spaces and arranged references properly as per OpalYosutebito's edits on: https://en.wikipedia.org/w/index.php?title=User:Moderately_Sized_Greg/sandbox&action=history
Citation bot (talk | contribs)
Alter: pages, journal, url, first3. URLs might have been anonymized. Add: doi, bibcode, authors 1-1. Removed parameters. Formatted dashes. Some additions/deletions were parameter name changes. Upgrade ISBN10 to 13. | Use this bot. Report bugs. | Suggested by Dominic3203 | Linked from User:LinguisticMystic/cs/outline | #UCB_webform_linked 1487/2277
Line 10:
== Estimation ==
 
Optical flow can be estimated in a number of ways. Broadly, optical flow estimation approaches can be divided into machine learning based models (sometimes called data-driven models), classical models (sometimes called knowledge-driven models) which do not use machine learning and hybrid models which use aspects of both learning based models and classical models.<ref>{{cite journal |last1=Zhai |first1=Mingliang |last2=Xiang |first2=Xuezhi |last3=Lv |first3=Ning |last4=Kong |first4=Xiangdong |title=Optical flow and scene flow estimation: A survey |journal=Pattern Recognition |date=2021 |volume=114 |pages=107861 |doi=10.1016/j.patcog.2021.107861 |bibcode=2021PatRe.11407861Z |url=https://www.sciencedirect.com/science/article/pii/S0031320321000480}}</ref>
 
===Classical Models===
 
Many classical models use the intuitive assumption of ''brightness constancy''; that even if a point moves between frames, its brightness stays constant.<ref name="Fortun_Survey_2015">{{cite journal |last1=Fortun |first1=Denis |last2=Bouthemy |first2=Patrick |last3=Kervrann |first3=Charles|title=Optical flow modeling and computation: A survey |journal=Computer Vision and Image Understanding |date=2015-05-01 |volume=134 |pages=1-211–21 |doi=10.1016/j.cviu.2015.02.008 |url=https://www.sciencedirect.com/science/article/pii/S1077314215000429 |access-date=2024-12-23}}</ref>
To formalise this intuitive assumption, consider two consecutive frames from a video sequence, with intensity <math>I(x, y, t)</math>, where <math>(x, y)</math> refer to pixel coordinates and <math>t</math> refers to time.
In this case, the brightness constancy constraint is
Line 23:
By itself, the brightness constancy constraint cannot be solved for <math>u</math> and <math>v</math> at each pixel, since there is only one equation and two unknowns.
This is known as the ''[[Motion perception#The aperture problem|aperture problem]]''.
Therefore, additional constraints must be imposed to estimate the flow field.<ref name="Brox_2004">{{cite conference |url=http://link.springer.com/10.1007/978-3-540-24673-2_3 |title=High Accuracy Optical Flow Estimation Based on a Theory for Warping |last1=Brox |first1=Thomas |last2=Bruhn |first2=Andrés |last3=Papenberg |first3=Nils |last4=Weickert |first4=Joachim |date=2004 |publisher=Springer Berlin Heidelberg |book-title=Computer Vision - ECCV 2004 |pages=25-3625–36 |___location=Berlin, Heidelberg |doi=10.1007/978-3-540-24673-2_3 |conference=ECCV 2004}}</ref><ref name="Baker_2011">{{cite journal |last1=Baker |first1=Simon |last2=Scharstein |first2=Daniel |last3=Lewis |first3=J. P. |last4=Roth |first4=Stefan |last5=Black |first5=Michael J. |last6=Szeliski |first6=Richard |title=A Database and Evaluation Methodology for Optical Flow |journal=International Journal of Computer Vision |date=1 March 2011 |volume=92 |issue=1 |pages=1–31 |doi=10.1007/s11263-010-0390-2 |url=https://link.springer.com/article/10.1007/s11263-010-0390-2 |access-date=25 Dec 2024 |language=en |issn=1573-1405}}</ref>
 
==== Regularized Models ====
Line 40:
:<math>E = \iint_\Omega \Psi(I_x u + I_y v + I_t) + \alpha \Psi(|\nabla u|) + \alpha \Psi(|\nabla v|) dx dy. </math>
For the choice of <math>\Psi(x) = x^2</math>, this method is the same as the [[Horn-Schunck method]].<ref name="Horn_1980" />
Of course, other choices of cost function have been used such as <math>\Psi(x) = \sqrt{x^2 + \epsilon^2}</math>, which is a differentiable variant of the [[Taxicab geometry |<math>L^1</math> norm]].<ref name="Fortun_Survey_2015" /><ref>{{cite conference |url=https://ieeexplore.ieee.org/abstract/document/5539939 |title=Secrets of optical flow estimation and their principles |last1=Sun |first1=Deqing |last2=Roth |first2=Stefan |last3=Black |first3="Micahel J." |date=2010 |publisher=IEEE |book-title=2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition |pages= 2432-24392432–2439 |___location=San Francisco, CA, USA |conference=2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition}}</ref>
 
To solve the aforementioned optimization problem, one can use the [[Euler-Lagrange equations]] to provide a system of partial differential equations for each point in <math>I(x, y, t)</math>. In the simplest case of using <math>\Psi(x) = x^2</math>, these equations are,
Line 49:
Doing so yields a system of linear equations which can be solved for <math>(u, v)</math> at each pixel, using an iterative scheme such as [[Gauss-Seidel]].<ref name="Horn_1980" />
 
Although, linearising the brightness constancy constraint simplifies the optimisation problem significantly, the linearisation is only valid for small displacements and/or smooth images. To avoid this problem, a multi-scale or coarse-to-fine approach is often used. In such a scheme, the images are initially [[downsampling|downsampled]] and the linearised Euler-Lagrange equations are solved at the reduced resolution. The estimated flow field at this scale is then used to initialise the process at next scale.<ref>{{cite journal |last1=Meinhardt-Llopis |first1=Enric |last2=Pérez |first2=Javier Sánchez |last3=Kondermann |first3=Daniel |title=Horn-Schunck Optical Flow with a Multi-Scale Strategy |journal=Image Processing Onon Line |date=19 July 2013 |volume=3 |pages=151–172 |doi=10.5201/ipol.2013.20}}</ref> This initialisation process is often performed by [[image warping|warping]] one frame using the current estimate of flow field so that it is as similar to other as possible.<ref name="Brox_2004" /><ref>{{cite journal |last1=Black |first1=Michael J. |last2=Anandan |first2=P. |title=The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields |journal=Computer Vision and Image Understanding |date=1 January 1996 |volume=63 |issue=1 |pages=75–104 |doi=10.1006/cviu.1996.0006 |issn=1077-3142}}</ref>
 
An alternate approach is to discretize the optimisation problem and then perform a search of the possible <math>(u, v)</math> values without linearising it.<ref>{{cite conference |url=https://ieeexplore.ieee.org/document/5459364 |title=Large Displacement Optical Flow Computation without Warping |last1=Steinbr¨ucker |first1=Frank |last2=Pock |first2=Thomas |last3=Cremers |first3=Daniel |last4=Weickert |first4=Joachim |date=2009 |publisher=IEEE |book-title=2009 IEEE 12th International Conference on Computer Vision |pages=1609-16141609–1614 |conference=2009 IEEE 12th International Conference on Computer Vision}}</ref>
This search is often performed using [[Max-flow min-cut theorem]] algorithms, linear programming or [[belief propagation]] methods.
 
Line 70:
\hat{\boldsymbol{\alpha}} = \arg \min_{\boldsymbol{\alpha}} \sum_{(x, y) \in \mathcal{R}} | I(x + u_{\boldsymbol{\alpha}}, y + v_{\boldsymbol{\alpha}}, t + 1) - I(x, y, t)| .
</math>
Other possible local loss functions include the negative normalized [[cross-correlation]] between the two frames.<ref>{{cite conference |lastlast1=Lucas |firstfirst1=Bruce D. |last2=Kanade |first2=Takeo |date=1981-08-24 |title=An iterative image registration technique with an application to stereo vision |url=https://dl.acm.org/doi/10.5555/1623264.1623280 |journal=Proceedings of the 7th International Joint Conference on Artificial intelligenceIntelligence - Volume 2 |series=IJCAI'81 |___location=San Francisco, CA, USA |publisher=Morgan Kaufmann Publishers Inc. |pages=674–679}}</ref>
 
===Learning-Based Models===
 
Instead of seeking to model optical flow directly, one can train a [[machine learning]] system to estimate optical flow. Since 2015, when FlowNet<ref>{{Cite conference |lastlast1=Dosovitskiy |firstfirst1=Alexey |last2=Fischer |first2=Philipp |last3=Ilg |first3=Eddy |last4=Hausser |first4=Philip |last5=Hazirbas |first5=Caner |last6=Golkov |first6=Vladimir |last7=Smagt |first7=Patrick van der |last8=Cremers |first8=Daniel |last9=Brox |first9=Thomas |date=2015 |title=FlowNet: Learning Optical Flow with Convolutional Networks |url=https://ieeexplore.ieee.org/document/7410673/ |publisher=IEEE |pages=2758–2766 |doi=10.1109/ICCV.2015.316 |isbn=978-1-4673-8391-2 | conference=2015 IEEE International Conference on Computer Vision (ICCV)}}</ref> was proposed, learning based models have been applied to optical flow and have gained prominence. Initially, these approaches were based on [[Convolutional neural network|Convolutional Neural Networks]] arranged in a [[U-Net]] architecture. However, with the advent of [[Transformer (deep learning architecture)|transformer architecture]] in 2017, transformer based models have gained prominence.<ref>{{Cite journal |lastlast1=Alfarano |firstfirst1=Andrea |last2=Maiano |first2=Luca |last3=Papa |first3=Lorenzo |last4=Amerini |first4=Irene |date=2024 |title=Estimating optical flow: A comprehensive review of the state of the art |url=https://linkinghub.elsevier.com/retrieve/pii/S1077314224002418 |journal=Computer Vision and Image Understanding |language=en |volume=249 |pages=104160 |doi=10.1016/j.cviu.2024.104160}}</ref>
 
Most learning-based approaches to optical flow use [[supervised learning]]. In this case, many frame pairs of video data and their corresponding [[ground truth|ground-truth]] flow fields are used to optimise the parameters of the learning-based model to accurately estimate optical flow. This process often relies on vast training datasets due to the number of parameters involved.<ref>{{cite journal |last1=Tu |first1=Zhigang |last2=Xie |first2=Wei |last3=Zhang |first3=Dejun |last4=Poppe |first4=Ronald |last5=Veltkamp |first5=Remco C. |last6=Li |first6=Baoxin |last7=Yuan |first7=Junsong |title=A survey of variational and CNN-based optical flow techniques |journal=Signal Processing: Image Communication |date=1 March 2019 |volume=72 |pages=9–24 |doi=10.1016/j.image.2018.12.002}}</ref>