Content deleted Content added
No edit summary Tags: Visual edit Mobile edit Mobile web edit |
No edit summary |
||
Line 1:
In [[mathematical physics]], '''vanishing scalar invariant (VSI) spacetimes''' are [[Lorentzian manifold]]s in which all polynomial [[curvature invariant]]s of all orders are vanishing. Although the only [[Riemannian manifold]] with the VSI property is flat space, the Lorentzian case admits nontrivial spacetimes with this property. Distinguishing these VSI spacetimes from [[Minkowski spacetime]] requires comparing non-polynomial invariants<ref>{{citation|first1=Don N.|last1=Page|title=Nonvanishing Local Scalar Invariants even in VSI Spacetimes with all Polynomial Curvature Scalar Invariants Vanishing|journal=Classical and Quantum Gravity|volume=26|page=055016|year=2009|issue=5|arxiv=0806.2144|doi=10.1088/0264-9381/26/5/055016|bibcode=2009CQGra..26e5016P|s2cid=118331266}}</ref> or carrying out the full [[Cartan–Karlhede algorithm]] on non-scalar quantities.<ref>{{citation|first1=A.|last1=Koutras|title=A spacetime for which the Karlhede invariant classification requires the fourth covariant derivative of the Riemann tensor|journal=Classical and Quantum Gravity|volume=9|page=L143|year=1992|issue=10|doi=10.1088/0264-9381/9/10/003|bibcode=1992CQGra...9L.143K|s2cid=250904726 }}</ref><ref>{{citation|first1=A.|last1=Koutras|first2=C.|last2=McIntosh|title=A metric with no symmetries or invariants|journal=Classical and Quantum Gravity|volume=13|page=L47|year=1996|issue=5|doi=10.1088/0264-9381/13/5/002|bibcode=1996CQGra..13L..47K|s2cid=250905968 }}</ref>
All VSI spacetimes are a
==References==
|