Dimensional modeling: Difference between revisions

Content deleted Content added
replace pov templates with how-to template
m “Rewrite ‘Benefits’: clarify and source claims; add integration and history bullets; cite Kimball (2013), Star Schema Benchmark, and Kimball Group pages; replace unsourced text.”
Line 54:
 
== Benefits of dimensional modeling ==
'''Commonly cited benefits of dimensional modeling include:'''<ref name="kimball2013">{{cite book |last1=Kimball |first1=Ralph |last2=Ross |first2=Margy |title=The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling |edition=3rd |year=2013 |publisher=Wiley |isbn=9781118530801 |page=43 |url=https://ia801609.us.archive.org/14/items/the-data-warehouse-toolkit-kimball/The%20Data%20Warehouse%20Toolkit%20-%20Kimball.pdf}}</ref>
Benefits of the dimensional model are the following:<ref name="refname5"/>
 
* Understandability. Compared to the normalized model, the dimensional model is easier to understand and more intuitive. In dimensional models, information is grouped into coherent business categories or dimensions, making it easier to read and interpret. Simplicity also allows software to navigate databases efficiently. In normalized models, data is divided into many discrete entities and even a simple business process might result in dozens of tables joined together in a complex way.
* '''Understandability and simplicity.''' Dimensional models organize data by business processes and shared business terms (dimensions), which makes schemas easier for analysts to navigate than highly normalized designs.<ref name="kimball2013" />
* Query performance. Dimensional models are more denormalized and optimized for data querying, while normalized models seek to eliminate data redundancies and are optimized for transaction loading and updating. The predictable framework of a dimensional model allows the database to make strong assumptions about the data which may have a positive impact on performance. Each dimension is an equivalent entry point into the fact table, and this symmetrical structure allows effective handling of complex queries. [[Query optimization]] for star-joined databases is simple, predictable, and controllable.
 
* Extensibility. Dimensional models are scalable and easily accommodate unexpected new data. Existing tables can be changed in place either by simply adding new data rows into the table or executing SQL alter table commands. No queries or applications that sit on top of the data warehouse need to be reprogrammed to accommodate changes. Old queries and applications continue to run without yielding different results. But in normalized models each modification should be considered carefully, because of the complex dependencies between database tables.
* '''Query performance for analytic workloads.''' Star-schema queries typically join a large fact table to a few small dimensions; many systems implement star-join optimizations, and benchmarks specifically evaluate this workload (e.g., the Star Schema Benchmark).<ref name="kimball2013" /><ref name="ssb2009">{{cite conference |last1=O'Neil |first1=Patrick |last2=O'Neil |first2=Elizabeth |last3=Chen |first3=Xuedong |last4=Revilak |first4=Stephen |title=The Star Schema Benchmark and Augmented Fact Table Indexing |booktitle=Performance Evaluation and Benchmarking (TPCTC 2009) |year=2009 |publisher=Springer |doi=10.1007/978-3-642-10424-4_17 |url=https://link.springer.com/chapter/10.1007/978-3-642-10424-4_17}}</ref>
 
* '''Extensibility (resilience to change).''' New facts or dimensions can be added without breaking existing queries so long as the fact-table grain is preserved; this allows incremental evolution of the warehouse.<ref name="kimball2013" />
 
* '''Integration and consistency across subject areas.''' Reusable '''conformed dimensions''' enable consistent cross-process analysis and reduce duplication in future projects.<ref name="bus">{{cite web |title=Enterprise Data Warehouse Bus Architecture |website=Kimball Group |url=https://www.kimballgroup.com/data-warehouse-business-intelligence-resources/kimball-techniques/kimball-data-warehouse-bus-architecture/ |access-date=2025-08-15}}</ref><ref name="conformed">{{cite web |title=Conformed Dimensions |website=Kimball Group |url=https://www.kimballgroup.com/data-warehouse-business-intelligence-resources/kimball-techniques/dimensional-modeling-techniques/conformed-dimension/ |access-date=2025-08-15}}</ref>
 
* '''Support for time-variant analysis.''' Techniques for '''slowly changing dimensions''' record attribute history so that analyses reflect the state of a dimension member at the time of each fact.<ref name="scd">{{cite web |title=Slowly Changing Dimensions |website=Kimball Group |date=2008-08-07 |url=https://www.kimballgroup.com/2008/08/slowly-changing-dimensions/ |access-date=2025-08-15}}</ref>
 
== Dimensional models, Hadoop, and big data ==