Policy gradient method: Difference between revisions

Content deleted Content added
merge hidden blocks
mNo edit summary
Line 47:
}}
 
{{hidden begin|style=width:100%|ta1=center|border=1px #aaa solid|title=ProofProofs}}
 
{{Math proof|title=Proof of Lemmathe lemma|proof=
 
Use the [[reparameterization trick#REINFORCE estimator|reparameterization trick]].
Line 84:
}}
 
{{Math proof|title=Proof of the two identities|proof=
Applying the [[reparameterization trick#REINFORCE estimator|reparameterization trick]],
 
Line 223:
x
</math> in <math>Fx = g</math> iteratively without explicit matrix inversion.
* Use [[backtracking line search]] to ensure the trust-region constraint is satisfied. Specifically, it backtracks the step size to ensure the KL constraint and policy improvement. byThat repeatedlyis, tryingit tests each of the following test-solutions<math display="block">
\theta_{t+1} = \theta_t + \sqrt{\frac{2\epsilon}{x^T F x}} x, \; \theta_t + \alpha \sqrt{\frac{2\epsilon}{x^T F x}} x, \; \theta_t + \alpha^2 \sqrt{\frac{2\epsilon}{x^T F x}} x, \; \dots
</math> until ait <math>\theta_{t+1}</math>finds is foundone that both satisfies the KL constraint <math>\bar{D}_{KL}(\pi_{\theta_{t+1}} \| \pi_{\theta_{t}}) \leq \epsilon </math> and results in a higher <math>
L(\theta_{t+1}, \theta_t) \geq L(\theta_t, \theta_t)
</math>. Here, <math>\alpha \in (0,1)</math> is the backtracking coefficient.