Hungarian algorithm: Difference between revisions

Content deleted Content added
Line 321:
 
<syntaxhighlight lang="cpp" line="1">
template <typename T>
template <class T> vectorVector<T> hungarian(const vectorVector<vectorVector<T>>& &C) {
const int J = (static_cast<int)size>(C), W = (int).size(C[0]));
const int W = static_cast<int>(C[0].size());
assert(J <= W);
// job[w] = job assigned to w-th worker, or -1 if no job assigned
// note: a W-th worker was added for convenience
vectorVector<int> job(W + 1, -1);
vectorVector<T> h(W); // Johnson potentials
vectorVector<T> answers;
T ans_curansCur = 0;
const T inf = std::numeric_limits<T>::max();
// assign j_curjCur-th job using Dijkstra with potentials
for (int j_curjCur = 0; j_curjCur < J; ++j_curjCur) {
int w_curwCur = W; // unvisited worker with minimum distance
job[w_curwCur] = j_cur;
vectorVector<T> dist(W + 1, inf); // Johnson-reduced distances
dist[W] = 0;
vectorVector<bool> vis(W + 1); // whether visited yet
vectorVector<int> prv(W + 1, -1); // previous worker on shortest path
while (job[w_curwCur] != -1) { // Dijkstra step: pop min worker from heap
T min_distminDist = inf;
vis[w_curwCur] = true;
int w_nextwNext = -1; // next unvisited worker with minimum distance
// consider extending shortest path by w_curwCur -> job[w_curwCur] -> w
for (int w = 0; w < W; ++w) {
if (!vis[w]) {
// sum of reduced edge weights w_curwCur -> job[w_curwCur] -> w
T edge = C[job[w_curwCur]][w] - h[w];
if (w_curwCur != W) {
edge -= C[job[w_curwCur]][w_curwCur] - h[w_curwCur];
assert(edge >= 0); // consequence of Johnson potentials
}
if (ckmin(dist[w], dist[w_curwCur] + edge)) prv[w] = w_cur;
if (ckmin(min_dist, dist prv[w])) w_next = wwCur;
if (ckmin(minDist, dist[w]))
wNext = w;
}
}
Line 359 ⟶ 363:
}
for (int w = 0; w < W; ++w) { // update potentials
ckmin(dist[w], dist[w_curwCur]);
h[w] += dist[w];
}
ans_cur += h[w_curwCur];
for (int w; w_curwCur != W; w_curwCur = w)
job[w_curwCur] = job[w = prv[w_curwCur]];
answers.push_back(ans_curansCur);
}
return answers;