Content deleted Content added
m Adding SVM to "See also" as an SVM is essentially a specialized RBFNN with a different training procedure. They solve the same problem in the same way but parameters are picked in a more structured way with SVM. |
ce |
||
Line 57:
|doi=10.1109/IEMBS.2002.1053230
|title=Mahalanobis distance with radial basis function network on protein secondary structures
|isbn=0-7803-7612-9
|issn=1094-687X
}}</ref>{{Editorializing|date=May 2020}}<!-- Was previously marked with a missing-citation tag asking in what sense using Mahalanobis distance is better and why the Euclidean distance is still normally used, but I found sources to support the first part, so it's likely salvageable. -->) and the radial basis function is commonly taken to be [[Normal distribution|Gaussian]]
|