Hyperbolic functions: Difference between revisions

Content deleted Content added
History: In fact, he had already been dead in 1722; Harmonia Mensurarum was published posthumously.
Useful relations: line breaking
Line 110:
==Useful relations==
{{Anchor|Osborn}}
The hyperbolic functions satisfy many identities, all of them similar in form to the [[trigonometric identity|trigonometric identities]]. In fact, '''Osborn's rule'''<ref name="Osborn, 1902" /> states that one can convert any trigonometric identity (up to but not including sinhs or implied sinhs of 4th degree) for <math>\theta</math>, <math>2\theta</math>, <math>3\theta</math> or <math>\theta</math> and <math>\varphi</math> into a hyperbolic identity, by:
# expanding it completely in terms of integral powers of sines and cosines,
# changing sine to sinh and cosine to cosh, and
# switching the sign of every term containing a product of two sinhs.
 
Odd and even functions: