Content deleted Content added
Undid revision 1291096063 by 2A01:E0A:2D4:37B0:9490:C18E:AF1:C958 (talk) – unnecessary, especially since the non-instantaneous rate is also proportional |
The article does not need a specific example. Undid revision 1291078630 by 2A01:E0A:2D4:37B0:A420:4468:C9F6:258 (talk) |
||
Line 23:
}}
In [[mathematics]], the '''exponential function''' is the unique [[real function]] which maps [[0|zero]] to [[1|one]] and has a [[derivative (mathematics)|derivative]] everywhere equal to its value. The exponential of a variable {{tmath|x}} is denoted {{tmath|\exp x}} or {{tmath|e^x}}, with the two notations used interchangeably. It is called ''exponential'' because its argument can be seen as an [[exponent (mathematics)|exponent]] to which a constant [[e (mathematical constant)|number {{math|''e'' ≈ 2.718}}]], the base, is raised. There are several other definitions of the exponential function, which are all equivalent although being of very different nature
The exponential function converts sums to products: it maps the [[additive identity]] {{math|0}} to the [[multiplicative identity]] {{math|1}}, and the exponential of a sum is equal to the product of separate exponentials, {{tmath|1=\exp(x + y) = \exp x \cdot \exp y }}. Its [[inverse function]], the [[natural logarithm]], {{tmath|\ln}} or {{tmath|\log}}, converts products to sums: {{tmath|1= \ln(x\cdot y) = \ln x + \ln y}}.
|