Content deleted Content added
Tag: Reverted |
|||
Line 58:
\end{align}</math>
for every [[real number]] <math>x</math> and every positive real number <math>y.</math>
===Power series===
Line 82 ⟶ 79:
''The exponential function is the [[limit (mathematics)|limit]], as the integer {{mvar|n}} goes to infinity,<ref name="Maor"/><ref name=":0" />
<math display=block>\exp(x)=\lim_{n \to +\infty} \left(1+\frac xn\right)^n.</math>
By continuity of the logarithm, this can be proved by taking logarithms and proving
<math display=block>x=\lim_{n\to\infty}\ln \left(1+\frac xn\right)^n= \lim_{n\to\infty}n\ln \left(1+\frac xn\right),</math>
|