Machine learning: Difference between revisions

Content deleted Content added
Bio8738 (talk | contribs)
ce
m Quote about business application
Tag: Reverted
Line 9:
'''Machine learning''' ('''ML''') is a [[field of study]] in [[artificial intelligence]] concerned with the development and study of [[Computational statistics|statistical algorithms]] that can learn from [[data]] and [[generalise]] to unseen data, and thus perform [[Task (computing)|tasks]] without explicit [[Machine code|instructions]].{{Refn|The definition "without being explicitly programmed" is often attributed to [[Arthur Samuel (computer scientist)|Arthur Samuel]], who coined the term "machine learning" in 1959, but the phrase is not found verbatim in this publication, and may be a [[paraphrase]] that appeared later. Confer "Paraphrasing Arthur Samuel (1959), the question is: How can computers learn to solve problems without being explicitly programmed?" in {{Cite conference |chapter=Automated Design of Both the Topology and Sizing of Analog Electrical Circuits Using Genetic Programming |conference=Artificial Intelligence in Design '96 |last1=Koza |first1=John R. |last2=Bennett |first2=Forrest H. |last3=Andre |first3=David |last4=Keane |first4=Martin A. |title=Artificial Intelligence in Design '96 |date=1996 |publisher=Springer Netherlands |___location=Dordrecht, Netherlands |pages=151–170 |language=en |doi=10.1007/978-94-009-0279-4_9 |isbn=978-94-010-6610-5 }}}} Within a subdiscipline in machine learning, advances in the field of [[deep learning]] have allowed [[Neural network (machine learning)|neural networks]], a class of statistical algorithms, to surpass many previous machine learning approaches in performance.<ref name="ibm">{{Cite web |title=What is Machine Learning? |url=https://www.ibm.com/topics/machine-learning |access-date=27 June 2023 |website=IBM |date=22 September 2021 |language=en-us |archive-date=27 December 2023 |archive-url=https://web.archive.org/web/20231227153910/https://www.ibm.com/topics/machine-learning |url-status=live }}</ref>
 
ML finds application in many fields, including [[natural language processing]], [[computer vision]], [[speech recognition]], [[email filtering]], [[agriculture]], and [[medicine]].<ref name="tvt">{{Cite journal |last1=Hu |first1=Junyan |last2=Niu |first2=Hanlin |last3=Carrasco |first3=Joaquin |last4=Lennox |first4=Barry |last5=Arvin |first5=Farshad |date=2020 |title=Voronoi-Based Multi-Robot Autonomous Exploration in Unknown Environments via Deep Reinforcement Learning |journal=IEEE Transactions on Vehicular Technology |volume=69 |issue=12 |pages=14413–14423 |doi=10.1109/tvt.2020.3034800 |s2cid=228989788 |issn=0018-9545 |doi-access=free |url=https://research.manchester.ac.uk/files/191737243/09244647.pdf }}</ref><ref name="YoosefzadehNajafabadi-2021">{{cite journal |last1=Yoosefzadeh-Najafabadi|first1=Mohsen |last2=Hugh |first2=Earl |last3=Tulpan |first3=Dan |last4=Sulik |first4=John |last5=Eskandari |first5=Milad |title=Application of Machine Learning Algorithms in Plant Breeding: Predicting Yield From Hyperspectral Reflectance in Soybean? |journal=Front. Plant Sci. |volume=11 |year=2021 |pages=624273|doi=10.3389/fpls.2020.624273 |pmid=33510761 |pmc=7835636 |doi-access=free |bibcode=2021FrPS...1124273Y }}</ref> The application of ML to business problems is known as [[predictive analytics]]<ref>{{Cita libro|apellidos=Chaves-Maza|nombre=Manuel|título=Sistema de inteligencia artificial para la mejora del asesoramiento y apoyo al emprendimiento|url=https://www.centrodeestudiosandaluces.es/publicaciones/n-99-sistema-de-inteligencia-artificial-para-la-mejora-del-asesoramiento-y-apoyo-al-emprendimiento|fechaacceso=11/06/2024|año=2023|editorial=Actualidad Centra|isbn=978-84-10064-01-0}}</ref>.
 
[[Statistics]] and [[mathematical optimisation]] (mathematical programming) methods comprise the foundations of machine learning. [[Data mining]] is a related field of study, focusing on [[exploratory data analysis]] (EDA) via [[unsupervised learning]].{{refn|Machine learning and pattern recognition "can be viewed as two facets of the same field".<ref name="bishop2006" />{{rp|vii}}}}<ref name="Friedman-1998">{{cite journal |last=Friedman |first=Jerome H. |author-link = Jerome H. Friedman|title=Data Mining and Statistics: What's the connection? |journal=Computing Science and Statistics |volume=29 |issue=1 |year=1998 |pages=3–9}}</ref>