Content deleted Content added
No edit summary |
No edit summary |
||
Line 1:
{{Short description|Tensor decomposition}}
In [[multilinear algebra]], the '''higher-order singular value decomposition''' ('''HOSVD''') is a misnomer since the resulting tensor decomposition does not retain all the defining properties of the matrix SVD. The matrix SVD simultaneously yields a rank-𝑅 decomposition and computes orthonormal subspaces for
[[Lieven De Lathauwer |De Lathauwer]] ''et al.''<ref name=":2">{{Cite journal|last1=De Lathauwer|first1=L.|last2=De Moor|first2=B.|last3=Vandewalle|first3=J.|date=2000-01-01|title=On the Best Rank-1 and Rank-(R1 ,R2 ,. . .,RN) Approximation of Higher-Order Tensors|journal=SIAM Journal on Matrix Analysis and Applications|volume=21|issue=4|pages=1324–1342|doi=10.1137/S0895479898346995|issn=0895-4798|citeseerx=10.1.1.102.9135}}</ref><ref name="
|author=M. A. O. Vasilescu, D. Terzopoulos
|title=Multilinear Analysis of Image Ensembles: TensorFaces
|book-title=Proc. 7th European Conference on Computer Vision (ECCV'02)
|___location=Copenhagen, Denmark
|year=2002
|url= https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=67eb22ae0baf86af77188fc0ab27edacf07a9140}}</ref><ref name="Vasilescu2003">{{cite conference
|author=M. A. O. Vasilescu, D. Terzopoulos
|title=Multilinear Subspace Analysis of Image Ensembles
|book-title=Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR’03)
|___location=Madison, WI
|year(2003]]</ref><ref name=":Vasilescu2005">{{cite conference
|author==M. A. O. Vasilescu, D. Terzopoulos
|title=Multilinear Independent Component Analysis
|book-title=Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR’05)
|___location=San Diego, CA
|year=2005}}</ref> introduced algorithmic clarity. They synthesized a set of ideas into an elegant two-step algorithm—one whose simplicity belies the complexity it resolves. Vasilescu and Terzopoulos introduced the '''M-mode SVD''' which is currently referred in the literature as the '''Tucker''' or the '''HOSVD'''. However, the Tucker algorithm, and De Lathauwer ''et al.'' companion algorithm<ref name=":2"/> are sequential, relying on iterative methods such as gradient descent or the power method, respectively. The term '''M-mode SVD''' accurately reflects the algorithm employed without overpromising; it captures the actual computation (a set of SVDs on mode-flattenings) without making assumptions about the structure of the core tensor or implying a rank decomposition. It can be computed sequentially, but is also well-suited for parallel computation.
: This misattribution has had lasting impact on the scholarly record, obscuring the original source of a widely adopted algorithm, and complicating efforts to trace its development, reproduce results, and recognizing the respective contributions of different research efforts.
Robust and L1-norm-based variants of this decomposition framework have since been proposed.<ref name="robustHOSVD">{{Cite journal|last1=Godfarb|first1=Donald|last2=Zhiwei|first2=Qin|title=Robust low-rank tensor recovery: Models and algorithms|journal=SIAM Journal on Matrix Analysis and Applications|volume=35|number=1|pages=225–253|date=2014|doi=10.1137/130905010|arxiv=1311.6182|s2cid=1051205}}</ref><ref name="l1tucker">{{cite journal|last1=Chachlakis|first1=Dimitris G.|last2=Prater-Bennette|first2=Ashley|last3=Markopoulos|first3=Panos P.|title=L1-norm Tucker Tensor Decomposition|journal=IEEE Access|date=22 November 2019|volume=7|pages=178454–178465|doi=10.1109/ACCESS.2019.2955134|doi-access=free|arxiv=1904.06455|bibcode=2019IEEEA...7q8454C}}</ref><ref name="l1tucker3">{{cite journal|last1=Markopoulos|first1=Panos P.|last2=Chachlakis|first2=Dimitris G.|last3=Papalexakis|first3=Evangelos|title=The Exact Solution to Rank-1 L1-Norm TUCKER2 Decomposition|journal=IEEE Signal Processing Letters|volume=25|issue=4|date=April 2018|pages=511–515|doi=10.1109/LSP.2018.2790901|arxiv=1710.11306|bibcode=2018ISPL...25..511M|s2cid=3693326}}</ref><ref name="l1tucker2">{{cite book|last1=Markopoulos|first1=Panos P.|last2=Chachlakis|first2=Dimitris G.|last3=Prater-Bennette|first3=Ashley|title=2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP) |chapter=L1-Norm Higher-Order Singular-Value Decomposition |date=21 February 2019|pages=1353–1357|doi=10.1109/GlobalSIP.2018.8646385|isbn=978-1-7281-1295-4|s2cid=67874182}}</ref>
Line 96 ⟶ 112:
<references />
{{DEFAULTSORT:
[[Category:Multilinear algebra]]
[[Category:Tensors]]
|