Lemniscate elliptic functions: Difference between revisions

Content deleted Content added
Undid revision 1296415762 by Headbomb (talk) inappropriate removal of a high-quality scan
m use short footnote
Line 1,222:
 
If <math>a</math> and <math>p</math> are coprime, then there exist numbers <math>p'\in\mathbb{Z}[i]</math> (see<ref>{{cite journal |last1=Eisenstein |first1=G.
|title=Beiträge zur Theorie der elliptischen Functionen |language=German|journal=Journal für die reine und angewandte Mathematik|date=1846 |volume=30| url=https://gdz.sub.uni-goettingen.de/id/PPN243919689_0030?tify=%7B%22pages%22%3A%5B202%5D%2C%22view%22%3A%22scan%22%7D}} Eisenstein uses <math>\varphi=\operatorname{sl}</math> and <math>\omega=2\varpi</math>.</ref> for these numbers) such that<ref>{{cite journal harvp|last1=Ogawa |first1=Takuma |title=Similarities between the trigonometric function and the lemniscate function from arithmetic view point |journal=Tsukuba Journal of Mathematics |date=2005 |volume=29 |issue=1 |doi=10.21099/tkbjm/1496164894 |url=https://projecteuclid.org/journals/tsukuba-journal-of-mathematics/volume-29/issue-1/Similarities-between-the-trigonometric-function-and-the-lemniscate-function-from/10.21099/tkbjm/1496164894.full }}</ref>
:<math>\left(\frac{a}{p}\right)_4=\prod_{p'} \frac{\operatorname{sl}(2\varpi ap'/p)}{\operatorname{sl}(2\varpi p'/p)}.</math>
This theorem is analogous to