Rational function: Difference between revisions

Content deleted Content added
m Applications: replaced: commonly-used → commonly used
m Complex rational functions: cosmetic: removed redundancies.
Line 31:
 
The ___domain of {{mvar|f}} is the set of complex numbers such that <math>Q(z)\ne 0</math>.
Iteration ofEvery rational functionsfunction oncan be naturally extended to a function whose ___domain and range are the whole [[Riemann sphere]], (i.e., a [[rational mapping]]). createsIteration of rational functions on the Riemann sphere forms a [[discrete dynamical system]]s.<ref>{{cite journal | last=Blanchard | first=Paul | title=Complex analytic dynamics on the Riemann sphere | journal=Bulletin of the American Mathematical Society | volume=11 | issue=1 | date=1984 | issn=0273-0979 | doi=10.1090/S0273-0979-1984-15240-6 | doi-access=free | pages=85–141|url=https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society-new-series/volume-11/issue-1/Complex-analytic-dynamics-on-the-Riemann-sphere/bams/1183551835.full}} p. 87</ref>
Every rational function can be naturally extended to a function whose ___domain and range are the whole [[Riemann sphere]] ([[complex projective line]]).
 
A complex rational function with degree one is a [[Möbius transformation]].
 
Rational functions are representative examples of [[meromorphic function]]s.<ref>{{cite book | last1=Ablowitz | first1=Mark J. | author1-link = Mark Ablowitz | last2=Fokas | first2=Athanassios S. | author2-link=Athanassios Fokas | title=Complex Variables | publisher=Cambridge University Press | date=2003 | isbn=978-0-521-53429-1|page=150}}</ref>
 
Iteration of rational functions on the [[Riemann sphere]] (i.e. a [[rational mapping]]) creates [[discrete dynamical system]]s.<ref>{{cite journal | last=Blanchard | first=Paul | title=Complex analytic dynamics on the Riemann sphere | journal=Bulletin of the American Mathematical Society | volume=11 | issue=1 | date=1984 | issn=0273-0979 | doi=10.1090/S0273-0979-1984-15240-6 | doi-access=free | pages=85–141|url=https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society-new-series/volume-11/issue-1/Complex-analytic-dynamics-on-the-Riemann-sphere/bams/1183551835.full}} p. 87</ref>
<gallery caption = "[[Julia set]]s for rational maps ">
Julia set f(z)=1 over az5+z3+bz.png| <math>\frac{1}{ az^5+z^3+bz}</math>