Content deleted Content added
m Open access bot: url-access=subscription updated in citation with #oabot. |
Citation bot (talk | contribs) Added article-number. Removed URL that duplicated identifier. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | #UCB_CommandLine |
||
Line 58:
# Mass and volume constraints: Space missions have strict limitations on [[payload]] mass and volume, necessitating compact and lightweight designs.<ref>{{Cite journal |last1=Werkheiser |first1=Mary J. |last2=Fiske |first2=Michael |last3=Edmunson |first3=Jennifer |last4=Khoshnevis |first4=Behrokh |date=2015-08-31 |title=On The Development of Additive Construction Technologies for Application to Development of Lunar/Martian Surface Structures Using In-Situ Materials |url=https://arc.aiaa.org/doi/10.2514/6.2015-4451 |journal=AIAA 2015-4451 Session: Space Habitat Construction Methods |language=en |publisher=American Institute of Aeronautics and Astronautics |doi=10.2514/6.2015-4451 |hdl=2060/20150021416 |isbn=978-1-62410-334-6|hdl-access=free }}</ref>
# Automation and remote operation: Many processes must be designed for [[Autonomous robot|autonomous]] or remote operation due to limited human presence in space environments.<ref>{{Cite journal |last=Sheridan |first=T.B. |date=October 1993 |title=Space teleoperation through time delay: review and prognosis
# Reliability and redundancy: The inaccessibility of space environments demands highly reliable systems with built-in [[Redundancy (engineering)|redundancies]] to mitigate potential failures.<ref>{{Cite book |url=https://isulibrary.isunet.edu/index.php?lvl=notice_display&id=10279 |title=Space Safety and Human Performance |date=2017-11-10 |publisher=Butterworth-Heinemann |isbn=978-0-08-101869-9 |language=en-US}}</ref>
# Microgravity-specific mechanisms: Equipment must often incorporate novel mechanisms to replace gravity-dependent functions, such as pumps for fluid transport or [[centrifuge]]s for separation processes.<ref>{{Cite journal |last=Schwartzkopf |first=S. H. |date=1992 |title=Design of a controlled ecological life support system: regenerative technologies are necessary for implementation in a lunar base CELSS |url=https://pubmed.ncbi.nlm.nih.gov/11537405/ |journal=BioScience |volume=42 |issue=7 |pages=526–535 |doi=10.2307/1311883 |jstor=1311883 |issn=0006-3568 |pmid=11537405}}</ref>
Line 77:
Materials processing in space offers unique opportunities for producing novel materials and improving existing manufacturing techniques.
[[Crystal growth]] in space benefits from the absence of gravity-induced convection and sedimentation. This environment allows for the growth of larger, more perfect crystals with fewer defects.<ref>{{Cite journal |last=Ferré-D'Amaré |first=Adrian R. |date=1999-07-01 |title=Crystallization of Biological Macromolecules, by Alexander McPherson. 1999. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press. Hardcover, 586 pp. $97 |url=https://www.cambridge.org/core/journals/rna/article/abs/crystallization-of-biological-macromolecules-by-alexander-mcpherson-1999-cold-spring-harbor-new-york-cold-spring-harbor-laboratory-press-hardcover-586-pp-97/2AAB312C66E0152B71B44C9F5B5C5B1E |journal=RNA |language=en |volume=5 |issue=7 |pages=847–848 |article-number=S1355838299000862 |doi=10.1017/S1355838299000862
[[Metallurgy]] and [[alloy]] formation in microgravity can result in materials with unique properties. The absence of buoyancy-driven convection allows for more uniform mixing of [[Melting|molten]] metals and the creation of novel alloys and composites that are difficult or impossible to produce on Earth.<ref name=":5" />
Line 128:
# Providing insights into phenomena difficult to observe experimentally.<ref>{{Citation |last=Lappa |first=Marcello |title=CHAPTER 1 - Space research |date=2004-01-01 |work=Fluids, Materials and Microgravity |pages=1–37 |editor-last=Lappa |editor-first=Marcello |url=https://www.sciencedirect.com/science/article/pii/B9780080445083500025 |access-date=2024-08-08 |place=Oxford |publisher=Elsevier |doi=10.1016/b978-008044508-3/50002-5 |isbn=978-0-08-044508-3|url-access=subscription }}</ref>
# Allowing parametric studies across a wide range of conditions.<ref>{{Cite journal |last1=Balasubramaniam |first1=R. |last2=Rame |first2=E. |last3=Kizito |first3=J. |last4=Kassemi |first4=M. |date=2006-01-01 |title=Two Phase Flow Modeling: Summary of Flow Regimes and Pressure Drop Correlations in Reduced and Partial Gravity |url=https://ntrs.nasa.gov/citations/20060008906 |journal=NASA NTRS |language=en}}</ref>
# Aiding in the design and optimization of space-based systems.<ref>{{Cite journal |last1=Brendel |first1=Leon PM |last2=Weibel |first2=Justin A |last3=Braun |first3=James E |last4=Groll |first4=Eckhard A |date=2023-03-01 |title=Microgravity two-phase flow research in the context of vapor compression cycle experiments on parabolic flights
CFD models for low-gravity applications often require modifications to account for the dominance of surface tension forces and the absence of buoyancy-driven flows.<ref>{{Cite journal |last1=Muradoglu |first1=Metin |last2=Tryggvason |first2=Gretar |date=2008-02-01 |title=A front-tracking method for computation of interfacial flows with soluble surfactants |url=https://www.sciencedirect.com/science/article/pii/S002199910700438X |journal=Journal of Computational Physics |volume=227 |issue=4 |pages=2238–2262 |doi=10.1016/j.jcp.2007.10.003 |bibcode=2008JCoPh.227.2238M |issn=0021-9991|url-access=subscription }}</ref> Validation of these models typically involves comparison with experimental data from microgravity platforms.<ref>{{Cite journal |last1=Dhir |first1=Vijay Kumar |last2=Warrier |first2=Gopinath R. |last3=Aktinol |first3=Eduardo |last4=Chao |first4=David |last5=Eggers |first5=Jeffery |last6=Sheredy |first6=William |last7=Booth |first7=Wendell |date=2012-11-01 |title=Nucleate Pool Boiling Experiments (NPBX) on the International Space Station |url=https://doi.org/10.1007/s12217-012-9315-8 |journal=Microgravity Science and Technology |language=en |volume=24 |issue=5 |pages=307–325 |doi=10.1007/s12217-012-9315-8 |bibcode=2012MicST..24..307D |issn=1875-0494|url-access=subscription }}</ref>
|