Content deleted Content added
Undid revision 1299849484 by Zinnober9 (talk)—see WP:PRE; these tags are necessary to enable Wiki markup inside <pre> |
m Reverted 1 edit by 2600:1016:A010:46F4:D306:8040:627C:7135 (talk) to last revision by Zinnober9 |
||
Line 229:
These examples are given in bit ''representation'', in [[hexadecimal]] and [[Binary number|binary]], of the floating-point value. This includes the sign, (biased) exponent, and significand.
<pre>
0 00000000 00000000000000000000001<sub>2</sub> = 0000 0001<sub>16</sub> = 2<sup>−126</sup> × 2<sup>−23</sup> = 2<sup>−149</sup> ≈ 1.4012984643 × 10<sup>−45</sup>
(smallest positive subnormal number)
</pre>
<pre>
0 00000000 11111111111111111111111<sub>2</sub> = 007f ffff<sub>16</sub> = 2<sup>−126</sup> × (1 − 2<sup>−23</sup>) ≈ 1.1754942107 ×10<sup>−38</sup>
(largest subnormal number)
</pre>
<pre>
0 00000001 00000000000000000000000<sub>2</sub> = 0080 0000<sub>16</sub> = 2<sup>−126</sup> ≈ 1.1754943508 × 10<sup>−38</sup>
(smallest positive normal number)
</pre>
<pre>
0 11111110 11111111111111111111111<sub>2</sub> = 7f7f ffff<sub>16</sub> = 2<sup>127</sup> × (2 − 2<sup>−23</sup>) ≈ 3.4028234664 × 10<sup>38</sup>
(largest normal number)
</pre>
<pre>
0 01111110 11111111111111111111111<sub>2</sub> = 3f7f ffff<sub>16</sub> = 1 − 2<sup>−24</sup> ≈ 0.999999940395355225
(largest number less than one)
</pre>
<pre>
0 01111111 00000000000000000000000<sub>2</sub> = 3f80 0000<sub>16</sub> = 1 (one)
Line 261:
</pre>
<pre>
1 10000000 00000000000000000000000<sub>2</sub> = c000 0000<sub>16</sub> = −2
0 00000000 00000000000000000000000<sub>2</sub> = 0000 0000<sub>16</sub> = 0
Line 267:
</pre>
<pre>
0 11111111 00000000000000000000000<sub>2</sub> = 7f80 0000<sub>16</sub> = infinity
1 11111111 00000000000000000000000<sub>2</sub> = ff80 0000<sub>16</sub> = −infinity
</pre>
<pre>
0 10000000 10010010000111111011011<sub>2</sub> = 4049 0fdb<sub>16</sub> ≈ 3.14159274101257324 ≈ π ( pi )
0 01111101 01010101010101010101011<sub>2</sub> = 3eaa aaab<sub>16</sub> ≈ 0.333333343267440796 ≈ 1/3
</pre>
<pre
x 11111111 10000000000000000000001<sub>2</sub> = ffc0 0001<sub>16</sub> = qNaN (on x86 and ARM processors)
x 11111111 00000000000000000000001<sub>2</sub> = ff80 0001<sub>16</sub> = sNaN (on x86 and ARM processors)
|