Lambda-CDM model: Difference between revisions

Content deleted Content added
KBC void: Removed. One paper making the claim of a problem.
Tags: section blanking Visual edit
High redshift galaxies: Significantly updated and improved.
Line 319:
 
==== High redshift galaxies ====
There has been debate on whether early massive galaxies and supermassive black holes are in conflict with LCDM<ref>{{Cite journal |last=Steinhardt |first=Charles. L. |last2=Capak |first2=Peter |last3=Masters |first3=Dan |last4=Speagle |first4=Josh S. |date=2016-06-10 |title=THE IMPOSSIBLY EARLY GALAXY PROBLEM |url=https://iopscience.iop.org/article/10.3847/0004-637X/824/1/21 |journal=The Astrophysical Journal |volume=824 |issue=1 |pages=21 |doi=10.3847/0004-637X/824/1/21 |issn=0004-637X}}</ref>. To make such a comparison, one must model the complex physics of galaxy formation, as well as the underlying LCDM cosmology.<ref>{{Cite journal |last=Behroozi |first=Peter |last2=Silk |first2=Joseph |date=2018-07-11 |title=The most massive galaxies and black holes allowed by ΛCDM |url=https://academic.oup.com/mnras/article/477/4/5382/4975781 |journal=Monthly Notices of the Royal Astronomical Society |language=en |volume=477 |issue=4 |pages=5382–5387 |doi=10.1093/mnras/sty945 |issn=0035-8711}}</ref> Tests using galaxies are therefore less direct, as they require assumptions about how galaxies form.
Observations from the [[James Webb Space Telescope]] have resulted in various galaxies confirmed by [[spectroscopy]] at high redshift, such as [[JADES-GS-z13-0]] at [[cosmological redshift]] of 13.2.<ref name="NASA-milestone">{{cite web|title = NASA's Webb Reaches New Milestone in Quest for Distant Galaxies|url = https://blogs.nasa.gov/webb/2022/12/09/nasas-webb-reaches-new-milestone-in-quest-for-distant-galaxies/|first = Thaddeus|last = Cesari|date = 9 December 2022|access-date = 9 December 2022}}</ref><ref name="Curtis-Lake2022">{{cite web|display-authors = etal|first1 = Emma|last1 = Curtis-Lake|title = Spectroscopy of four metal-poor galaxies beyond redshift ten|url = https://webbtelescope.org/files/live/sites/webb/files/home/webb-science/early-highlights/_documents/2022-061-jades/JADES_CurtisLake.pdf|date = December 2022| arxiv=2212.04568 }}</ref> Other candidate galaxies which have not been confirmed by spectroscopy include [[CEERS-93316]] at cosmological [[redshift]] of 16.4.
 
Using some of the first data from the [[James Web Space Telescope]], a team of astronomers selected candidate massive galaxies in the early universe.<ref>{{Cite journal |last=Labbé |first=Ivo |last2=van Dokkum |first2=Pieter |last3=Nelson |first3=Erica |last4=Bezanson |first4=Rachel |last5=Suess |first5=Katherine A. |last6=Leja |first6=Joel |last7=Brammer |first7=Gabriel |last8=Whitaker |first8=Katherine |last9=Mathews |first9=Elijah |last10=Stefanon |first10=Mauro |last11=Wang |first11=Bingjie |date=2023-04 |title=A population of red candidate massive galaxies ~600 Myr after the Big Bang |url=https://www.nature.com/articles/s41586-023-05786-2 |journal=Nature |language=en |volume=616 |issue=7956 |pages=266–269 |doi=10.1038/s41586-023-05786-2 |issn=1476-4687}}</ref> The existence of such massive galaxies in the early universe would challenge standard cosmology. <ref name="Boylan-Kolchin">{{cite journal|title=Stress testing ΛCDM with high-redshift galaxy candidates|first=Michael|last=Boylan-Kolchin|journal=Nature Astronomy |year=2023 |volume=7 |issue=6 |pages=731–735 |doi=10.1038/s41550-023-01937-7 |pmid=37351007 |pmc=10281863 |arxiv=2208.01611|bibcode=2023NatAs...7..731B |s2cid=251252960 }}</ref> Follow up spectroscopy revealed that most of these objects have [[Active galactic nucleus|Active Galactic Nuclei]], which boosts the galaxies brightness and caused the masses to be overestimated. <ref>{{Cite web |date=2025-07-01 |title=JWST's early galaxies didn't break the Universe. They revealed it. |url=https://bigthink.com/starts-with-a-bang/jwst-break-universe-revealed/ |access-date=2025-07-24 |website=Big Think |language=en-US}}</ref><ref>{{Cite journal |last=Kocevski |first=Dale D. |last2=Finkelstein |first2=Steven L. |last3=Barro |first3=Guillermo |last4=Taylor |first4=Anthony J. |last5=Calabrò |first5=Antonello |last6=Laloux |first6=Brivael |last7=Buchner |first7=Johannes |last8=Trump |first8=Jonathan R. |last9=Leung |first9=Gene C. K. |last10=Yang |first10=Guang |last11=Dickinson |first11=Mark |last12=Pérez-González |first12=Pablo G. |last13=Pacucci |first13=Fabio |last14=Inayoshi |first14=Kohei |last15=Somerville |first15=Rachel S. |date=2025-06 |title=The Rise of Faint, Red Active Galactic Nuclei at z &gt; 4: A Sample of Little Red Dots in the JWST Extragalactic Legacy Fields |url=https://ui.adsabs.harvard.edu/abs/2025ApJ...986..126K/abstract |journal=The Astrophysical Journal |language=en |volume=986 |issue=2 |pages=126 |doi=10.3847/1538-4357/adbc7d |issn=0004-637X}}</ref> The high redshift galaxies which have been spectroscopically confirmed, such as [[JADES-GS-z13-0]], are much less massive and are consistent with the predictions from LCDM simulations run before JWST<ref>{{Cite journal |last=McCaffrey |first=Joe |last2=Hardin |first2=Samantha |last3=Wise |first3=John H. |last4=Regan |first4=John A. |date=2023-09-27 |title=No Tension: JWST Galaxies at \(z > 10\) Consistent with Cosmological Simulations |url=http://localhost:58547/article/88302-no-tension-jwst-galaxies-at-z-10-consistent-with-cosmological-simulations,%20https://astro.theoj.org/article/88302-no-tension-jwst-galaxies-at-z-10-consistent-with-cosmological-simulations |journal=The Open Journal of Astrophysics |language=en |volume=6 |doi=10.21105/astro.2304.13755}}</ref>. As a population, the confirmed high redshift galaxies are brighter than expected from simulations, but not to the extent that they violate cosmological limits.<ref>{{Cite journal |last=Xiao |first=Mengyuan |last2=Oesch |first2=Pascal A. |last3=Elbaz |first3=David |last4=Bing |first4=Longji |last5=Nelson |first5=Erica J. |last6=Weibel |first6=Andrea |last7=Illingworth |first7=Garth D. |last8=van Dokkum |first8=Pieter |last9=Naidu |first9=Rohan P. |last10=Daddi |first10=Emanuele |last11=Bouwens |first11=Rychard J. |last12=Matthee |first12=Jorryt |last13=Wuyts |first13=Stijn |last14=Chisholm |first14=John |last15=Brammer |first15=Gabriel |date=2024-11 |title=Accelerated formation of ultra-massive galaxies in the first billion years |url=https://ui.adsabs.harvard.edu/abs/2024Natur.635..311X/abstract |journal=Nature |language=en |volume=635 |issue=8038 |pages=311–315 |doi=10.1038/s41586-024-08094-5 |issn=0028-0836}}</ref><ref>{{Citation |last=Yung |first=L. Y. Aaron |title=$Λ$CDM is still not broken: empirical constraints on the star formation efficiency at $z \sim 12-30$ |date=2025 |url=https://arxiv.org/abs/2504.18618 |access-date=2025-07-24 |publisher=arXiv |doi=10.48550/ARXIV.2504.18618 |last2=Somerville |first2=Rachel S. |last3=Iyer |first3=Kartheik G.}}</ref> Theorists are studying many possible explanations, including modifying cosmology, more efficient star formation and different stellar populations.<ref>{{Cite journal |last=Sun |first=Guochao |last2=Faucher-Giguère |first2=Claude-André |last3=Hayward |first3=Christopher C. |last4=Shen |first4=Xuejian |last5=Wetzel |first5=Andrew |last6=Cochrane |first6=Rachel K. |date=2023-10-01 |title=Bursty Star Formation Naturally Explains the Abundance of Bright Galaxies at Cosmic Dawn |url=https://iopscience.iop.org/article/10.3847/2041-8213/acf85a |journal=The Astrophysical Journal Letters |volume=955 |issue=2 |pages=L35 |doi=10.3847/2041-8213/acf85a |issn=2041-8205}}</ref><ref>{{Cite journal |last=Dekel |first=Avishai |last2=Sarkar |first2=Kartick C |last3=Birnboim |first3=Yuval |last4=Mandelker |first4=Nir |last5=Li |first5=Zhaozhou |date=2023-06-08 |title=Efficient formation of massive galaxies at cosmic dawn by feedback-free starbursts |url=https://academic.oup.com/mnras/article/523/3/3201/7179993 |journal=Monthly Notices of the Royal Astronomical Society |language=en |volume=523 |issue=3 |pages=3201–3218 |doi=10.1093/mnras/stad1557 |issn=0035-8711}}</ref>
Existence of surprisingly massive galaxies in the early universe challenges the preferred models describing how dark matter halos drive galaxy formation. It remains to be seen whether a revision of the Lambda-CDM model with parameters given by Planck Collaboration is necessary to resolve this issue. The discrepancies could also be explained by particular properties (stellar masses or effective volume) of the candidate galaxies, yet unknown force or particle outside of the [[Standard Model]] through which dark matter interacts, more efficient baryonic matter accumulation by the dark matter halos, early dark energy models,<ref name="SmithEtAl-2022">{{cite journal|title=Hints of early dark energy in Planck, SPT, and ACT data: New physics or systematics?|author1=Smith, Tristian L.|author2=Lucca, Matteo|author3=Poulin, Vivian|author4=Abellan, Guillermo F.|author5=Balkenhol, Lennart|author6=Benabed, Karim|author7=Galli, Silvia|author8=Murgia, Riccardo|journal=Physical Review D|volume=106|issue=4|date=August 2022|page=043526 |doi=10.1103/PhysRevD.106.043526|arxiv=2202.09379|bibcode=2022PhRvD.106d3526S|s2cid=247011465 }}</ref> or the hypothesized long-sought [[Population III stars]].<ref name="Boylan-Kolchin">{{cite journal|title=Stress testing ΛCDM with high-redshift galaxy candidates|first=Michael|last=Boylan-Kolchin|journal=Nature Astronomy |year=2023 |volume=7 |issue=6 |pages=731–735 |doi=10.1038/s41550-023-01937-7 |pmid=37351007 |pmc=10281863 |arxiv=2208.01611|bibcode=2023NatAs...7..731B |s2cid=251252960 }}</ref><ref name="SciAm2022">{{cite web|title=Astronomers Grapple with JWST's Discovery of Early Galaxies|url=https://www.scientificamerican.com/article/astronomers-grapple-with-jwsts-discovery-of-early-galaxies1/|last=O'Callaghan|first=Jonathan|website=[[Scientific American]] |date=6 December 2022|access-date=10 December 2022}}</ref><ref name="BehrooziEtAl">{{cite journal|title=The Universe at z > 10: predictions for JWST from the UNIVERSEMACHINE DR1|author1= Behroozi, Peter|author2=Conroy, Charlie|author3=Wechsler, Risa H.|author4=Hearin, Andrew|author5=Williams, Christina C.|author6=Moster, Benjamin P.|author7=Yung, L. Y. Aaron|author8=Somerville, Rachel S.|author9=Gottlöber, Stefan|author10=Yepes, Gustavo|author11=Endsley, Ryan|journal=Monthly Notices of the Royal Astronomical Society|volume=499|issue=4|pages=5702–5718|date=December 2020|doi=10.1093/mnras/staa3164|doi-access= free|arxiv=2007.04988|bibcode=2020MNRAS.499.5702B}}</ref><ref name="SpringelHernquist">{{cite journal|title=The history of star formation in a Λ cold dark matter universe|author1=Volker Springel|author2=Lars Hernquist|journal=Monthly Notices of the Royal Astronomical Society|volume=339|issue=2|pages=312–334|date=February 2003|doi=10.1046/j.1365-8711.2003.06207.x|doi-access=free |arxiv=astro-ph/0206395|bibcode=2003MNRAS.339..312S |s2cid=8715136 }}</ref>
 
=== Missing baryon problem ===