Error correction code: Difference between revisions

Content deleted Content added
m Local decoding and testing of codes: Removed duplicated text
Tags: Mobile edit Mobile app edit Android app edit App section source
Line 134:
 
[[Locally decodable code]]s are error-correcting codes for which single bits of the message can be probabilistically recovered by only looking at a small (say constant) number of positions of a codeword, even after the codeword has been corrupted at some constant fraction of positions. [[Locally testable code]]s are error-correcting codes for which it can be checked probabilistically whether a signal is close to a codeword by only looking at a small number of positions of the signal.
 
Not all testing codes are locally decoding and testing of codes
 
Not all locally decodable codes (LDCs) are locally testable codes (LTCs)<ref name="decNotTest">{{cite web |last1=Kaufman |first1=Tali |author1-link=Tali Kaufman |last2=Viderman |first2=Michael |title=Locally Testable vs. Locally Decodable Codes |url=http://eccc.hpi-web.de/report/2010/130/revision/1/download/}}</ref> neither locally correctable codes (LCCs),<ref>{{Cite web |last=Brubaker |first=Ben |date=2024-01-09 |title='Magical' Error Correction Scheme Proved Inherently Inefficient |url=https://www.quantamagazine.org/magical-error-correction-scheme-proved-inherently-inefficient-20240109/ |access-date=2024-01-09 |website=Quanta Magazine |language=en}}</ref> q-query LCCs are bounded exponentially<ref>{{Cite arXiv |last1=Kothari |first1=Pravesh K. |last2=Manohar |first2=Peter |date=2023 |title=An Exponential Lower Bound for Linear 3-Query Locally Correctable Codes |class=cs.CC |eprint=2311.00558}}</ref><ref>{{Cite book |last1=Kerenidis |first1=Iordanis |last2=de Wolf |first2=Ronald |chapter=Exponential lower bound for 2-query locally decodable codes via a quantum argument |date=2003-06-09 |title=Proceedings of the thirty-fifth annual ACM symposium on Theory of computing |chapter-url=https://dl.acm.org/doi/10.1145/780542.780560 |language=en |publisher=ACM |pages=106–115 |doi=10.1145/780542.780560 |arxiv=quant-ph/0208062 |isbn=978-1-58113-674-6|s2cid=10585919 }}</ref> while LDCs can have [[Subexponential time|subexponential]] lengths.<ref>{{Cite journal |last=Yekhanin |first=Sergey |date=February 2008 |title=Towards 3-query locally decodable codes of subexponential length |url=https://dl.acm.org/doi/10.1145/1326554.1326555 |journal=Journal of the ACM |language=en |volume=55 |issue=1 |pages=1–16 |doi=10.1145/1326554.1326555 |s2cid=14617710 |issn=0004-5411|url-access=subscription }}</ref><ref>{{Cite book |last=Efremenko |first=Klim |chapter=3-query locally decodable codes of subexponential length |date=2009-05-31 |title=Proceedings of the forty-first annual ACM symposium on Theory of computing |chapter-url=https://dl.acm.org/doi/10.1145/1536414.1536422 |journal=[[Journal of the ACM]] |language=en |publisher=ACM |pages=39–44 |doi=10.1145/1536414.1536422 |isbn=978-1-60558-506-2|s2cid=263865692 }}</ref>