Content deleted Content added
Line 249:
===Neural history compressor===
The ''neural history compressor'' is an unsupervised stack of RNNs.<ref name="schmidhuber1992">{{cite journal |last1=Schmidhuber |first1=Jürgen |year=1992 |title=Learning complex, extended sequences using the principle of history compression |url=ftp://ftp.idsia.ch/pub/juergen/chunker.pdf |journal=Neural Computation |volume=4 |issue=2 |pages=234–242 |doi=10.1162/neco.1992.4.2.234 |archive-url=https://web.archive.org/web/20170706014739/ftp://ftp.idsia.ch/pub/juergen/chunker.pdf |archive-date=2017-07-06 |url-status=dead |s2cid=18271205 }}</ref> At the input level, it learns to predict its next input from the previous inputs. Only unpredictable inputs of some RNN in the hierarchy become inputs to the next higher level RNN, which therefore recomputes its internal state only rarely. Each higher level RNN thus studies a compressed representation of the information in the RNN below. This is done such that the input sequence can be precisely reconstructed from the representation at the highest level.
The system effectively minimizes the description length or the negative [[logarithm]] of the probability of the data.<ref name="scholarpedia2015pre">{{cite journal |last1=Schmidhuber |first1=Jürgen |year=2015 |title=Deep Learning |journal=Scholarpedia |volume=10 |issue=11 |page=32832 |doi=10.4249/scholarpedia.32832 |bibcode=2015SchpJ..1032832S |doi-access=free }}</ref> Given a lot of learnable predictability in the incoming data sequence, the highest level RNN can use supervised learning to easily classify even deep sequences with long intervals between important events.
|