Content deleted Content added
→Continuous-time: Linking. |
|||
Line 307:
CTRNNs have been applied to [[evolutionary robotics]] where they have been used to address vision,<ref>{{citation |last1=Harvey |first1=Inman |title=3rd international conference on Simulation of adaptive behavior: from animals to animats 3 |pages=392–401 |year=1994 |contribution=Seeing the light: Artificial evolution, real vision |contribution-url=https://www.researchgate.net/publication/229091538_Seeing_the_Light_Artificial_Evolution_Real_Vision |last2=Husbands |first2=Phil |last3=Cliff |first3=Dave}}</ref> co-operation,<ref name="Evolving communication without dedicated communication channels">{{cite conference |last=Quinn |first=Matt |year=2001 |title=Evolving communication without dedicated communication channels |pages=357–366 |doi=10.1007/3-540-44811-X_38 |isbn=978-3-540-42567-0 |book-title=Advances in Artificial Life: 6th European Conference, ECAL 2001}}</ref> and minimal cognitive behaviour.<ref name="The dynamics of adaptive behavior: A research program">{{cite journal |last=Beer |first=Randall D. |year=1997 |title=The dynamics of adaptive behavior: A research program |journal=Robotics and Autonomous Systems |volume=20 |issue=2–4 |pages=257–289 |doi=10.1016/S0921-8890(96)00063-2}}</ref>
Note that, by the [[Shannon sampling theorem]], discrete-time recurrent neural networks can be viewed as continuous-time recurrent neural networks where the differential equations have transformed into equivalent [[difference equation]]s.<ref name="Sherstinsky-NeurIPS2018-CRACT-3">{{cite conference |last=Sherstinsky |first=Alex |date=2018-12-07 |editor-last=Bloem-Reddy |editor-first=Benjamin |editor2-last=Paige |editor2-first=Brooks |editor3-last=Kusner |editor3-first=Matt |editor4-last=Caruana |editor4-first=Rich |editor5-last=Rainforth |editor5-first=Tom |editor6-last=Teh |editor6-first=Yee Whye |title=Deriving the Recurrent Neural Network Definition and RNN Unrolling Using Signal Processing |url=https://www.researchgate.net/publication/331718291 |conference=Critiquing and Correcting Trends in Machine Learning Workshop at NeurIPS-2018 |conference-url=https://ml-critique-correct.github.io/}}</ref> This transformation can be thought of as occurring after the post-synaptic node activation functions <math>y_i(t)</math> have been [[Low-pass filter|low-pass filtered]] but prior to sampling.
They are in fact [[recursive neural network]]s with a particular structure: that of a linear chain. Whereas recursive neural networks operate on any hierarchical structure, combining child representations into parent representations, recurrent neural networks operate on the linear progression of time, combining the previous time step and a hidden representation into the representation for the current time step.
|