Content deleted Content added
Fix |
No edit summary Tag: Reverted |
||
Line 1:
{{Short description|Mathematical functions}}
[[File:The lemniscate sine and lemniscate cosine functions of a real variable.png|thumb|upright=2.0|The lemniscate sine (red) and lemniscate cosine (purple) applied to a real argument, in comparison with the trigonometric sine {{math|''y'' {{=}} sin(''πx''/''ϖ'')}} (pale dashed red).]]
<span style="display: none;"><math>\def\sl{\operatorname{sl}} \def\cl{\operatorname{cl}}</math></span>In [[mathematics]], the '''lemniscate elliptic functions''' are [[elliptic function]]s related to the arc length of the [[lemniscate of Bernoulli]]. They were first studied by [[Giulio Carlo de' Toschi di Fagnano|Giulio Fagnano]] in 1718 and later by [[Leonhard Euler]] and [[Carl Friedrich Gauss]], among others.<ref>{{harvp|Fagnano|1718–1723}}; {{harvp|Euler|1761}}; {{harvp|Gauss|1917}}</ref>
The '''lemniscate sine''' and '''lemniscate cosine''' functions, usually written with the symbols {{math|sl}} and {{math|cl}} (sometimes the symbols {{math|sinlem}} and {{math|coslem}} or {{math|sin lemn}} and {{math|cos lemn}} are used instead),<ref>{{harvp|Gauss|1917}} p. 199 used the symbols {{math|sl}} and {{math|cl}} for the lemniscate sine and cosine, respectively, and this notation is most common today: see e.g. {{harvp|Cox|1984}} p. 316, {{harvp|Eymard|Lafon|2004}} p. 204, and {{harvp|Lemmermeyer|2000}} p. 240. {{harvp|Ayoub|1984}} uses {{math|sinlem}} and {{math|coslem}}. {{harvp|Whittaker|Watson|1920}} use the symbols {{math|sin lemn}} and {{math|cos lemn}}. Some sources use the generic letters {{math|''s''}} and {{math|''c''}}. {{harvp|Prasolov|Solovyev|1997}} use the letter {{math|''φ''}} for the lemniscate sine and {{math|''φ′''}} for its derivative.</ref> are analogous to the [[trigonometric functions]] sine and cosine. While the trigonometric sine relates the arc length to the chord length in a unit-[[diameter]] [[circle]] <!--
Line 11 ⟶ 10:
The lemniscate functions have periods related to a number {{math|<math>\varpi =</math> 2.622057...}} called the [[lemniscate constant]], the ratio of a lemniscate's perimeter to its diameter. This number is a [[Quartic plane curve|quartic]] analog of the ([[Conic section|quadratic]]) {{math|<math>\pi =</math> 3.141592...}}, [[pi|ratio of perimeter to diameter of a circle]].
As [[complex analysis|complex functions]], {{math|sl}} and {{math|cl}} have a [[square lattice|square]] [[period lattice]] (a multiple of the [[Gaussian integer]]s) with [[Fundamental pair of periods|fundamental periods]] <math>\{(1 + i)\varpi, (1 - i)\varpi\},</math><ref>The fundamental periods <math>(1+i)\varpi</math> and <math>(1-i)\varpi</math> are "minimal" in the sense that they have the smallest absolute value of all periods whose real part is non-negative.</ref> and are a special case of two [[Jacobi elliptic functions]] on that lattice, <math>\
Similarly, the '''hyperbolic lemniscate sine''' {{math|slh}} and '''hyperbolic lemniscate cosine''' {{math|clh}} have a square period lattice with fundamental periods <math>\bigl\{\sqrt2\varpi, \sqrt2\varpi i\bigr\}.</math>
Line 21 ⟶ 20:
The lemniscate functions {{math|sl}} and {{math|cl}} can be defined as the solution to the [[initial value problem]]:<ref>{{harvp|Robinson|2019a}} starts from this definition and thence derives other properties of the lemniscate functions.</ref>
:<math>\frac{\mathrm{d}}{\mathrm{d}z} \
or equivalently as the [[inverse function|inverses]] of an [[elliptic integral]], the [[Schwarz–Christoffel mapping|Schwarz–Christoffel map]] from the complex [[unit disk]] to a square with corners <math>\big\{\tfrac12\varpi, \tfrac12\varpi i, -\tfrac12\varpi, -\tfrac12\varpi i\big\}\colon</math><ref>This map was the first ever picture of a Schwarz–Christoffel mapping, in {{harvp|Schwarz|1869}} [https://archive.org/details/sim_journal-fuer-die-reine-und-angewandte-mathematik_1869_70/page/113 p. 113].</ref>
:<math> z = \int_0^{\
Beyond that square, the functions can be extended to the [[complex plane]] via [[analytic continuation]] by successive [[Schwarz reflection principle|reflections]].
Line 43 ⟶ 42:
:<math>\varpi = 2\int_0^1\frac{\mathrm{d}t}{\sqrt{1-t^4}} = 2.62205\ldots</math>
The lemniscate functions satisfy the basic relation <math>\
The lemniscate constant {{tmath|\varpi}} is a close analog of the [[pi|circle constant {{tmath|\pi}}]], and many identities involving {{tmath|\pi}} have analogues involving {{tmath|\varpi}}, as identities involving the [[trigonometric functions]] have analogues involving the lemniscate functions. For example, [[Viète's formula]] for {{tmath|\pi}} can be written:
Line 68 ⟶ 67:
=== Zeros, poles and symmetries ===
[[File:Lemniscate sine in the complex plane.svg|thumb|right|upright=1.3|<math>\
The lemniscate functions {{math|cl}} and {{math|sl}} are [[even and odd functions]], respectively,
:<math>\begin{aligned}
\
\
\end{aligned}</math>
At translations of <math>\tfrac12\varpi,</math> {{math|cl}} and {{math|sl}} are exchanged, and at translations of <math>\tfrac12i\varpi</math> they are additionally rotated and [[multiplicative inverse|reciprocated]]:<ref>Combining the first and fourth identity gives <math>\
:<math>\begin{aligned}
{\
{\
{\
{\
\end{aligned}</math>
Line 87 ⟶ 86:
:<math>\begin{aligned}
\
\
\end{aligned}</math>
Line 94 ⟶ 93:
:<math>\begin{aligned}
{\
{\
\end{aligned}</math>
Line 103 ⟶ 102:
:<math>\begin{aligned}
\
\
\
\
\end{aligned}</math>
The {{math|sl}} function has simple [[zeros and poles|zeros]] at Gaussian integer multiples of {{tmath|\varpi}}, complex numbers of the form <math>a\varpi + b\varpi i</math> for integers {{tmath|a}} and {{tmath|b}}. It has simple [[zeros and poles|poles]] at Gaussian [[half-integer]] multiples of {{tmath|\varpi}}, complex numbers of the form <math>\bigl(a + \tfrac12\bigr)\varpi + \bigl(b + \tfrac12\bigr)\varpi i</math>, with [[residue (complex analysis)|residue]]s <math>(-1)^{a-b+1}i</math>. The {{math|cl}} function is reflected and offset from the {{math|sl}} function, <math>\
Also
:<math>\
for some <math>m,n\in\mathbb{Z}</math> and
:<math>\
The last formula is a special case of [[complex multiplication]]. Analogous formulas can be given for <math>\
There are also infinite series reflecting the distribution of the zeros and poles of {{math|sl}}:<ref>{{harvp|Reinhardt|Walker|2010a}} [https://dlmf.nist.gov/22.12.6 §22.12.6], [https://dlmf.nist.gov/22.12.12 §22.12.12]</ref><ref>Analogously, <math>\frac{1}{\sin z}=\sum_{n\in\mathbb{Z}}\frac{(-1)^n}{z+n\pi}.</math></ref>
:<math>\frac{1}{\
:<math>\
=== Pythagorean-like identity ===
Line 127 ⟶ 126:
:<math>\operatorname{cl^2} z + \operatorname{sl^2} z + \operatorname{cl^2} z \, \operatorname{sl^2} z = 1</math>
As a result, the parametric equation <math>(x, y) = (\
This identity can alternately be rewritten:<ref>{{harvp|Lindqvist|Peetre|2001}} generalizes the first of these forms.</ref>
Line 140 ⟶ 139:
:<math>\operatorname{cl^2} z \oplus \operatorname{sl^2} z = 1.</math>
The functions <math>\tilde{\
:<math>\left(\int_0^x \tilde{\
=== Derivatives and integrals ===
Line 149 ⟶ 148:
:<math>\begin{aligned}
\frac{\mathrm{d}}{\mathrm{d}z}\
&= -\bigl(1 + \operatorname{cl^2} z\bigr)\
\operatorname{cl'^2} z &= 1 - \operatorname{cl^4} z \\[5mu]
\frac{\mathrm{d}}{\mathrm{d}z}\
&= \bigl(1 + \operatorname{sl^2} z\bigr)\
\operatorname{sl'^2} z &= 1 - \operatorname{sl^4} z\end{aligned}</math>
:<math>\begin{align}\frac{\mathrm d}{\mathrm dz}\,\tilde{\
\frac{\mathrm d}{\mathrm dz}\,\tilde{\
\end{align}</math>
Line 165 ⟶ 164:
The second derivatives of lemniscate sine and lemniscate cosine are their negative duplicated cubes:
:<math>\frac{\mathrm{d}^2}{\mathrm{d}z^2}\
:<math>\frac{\mathrm{d}^2}{\mathrm{d}z^2}\
The lemniscate functions can be integrated using the inverse tangent function:
:<math>\begin{align}\int\
\int\
\int\tilde{\
\int\tilde{\
=== Argument sum and multiple identities ===
Line 180 ⟶ 179:
Like the trigonometric functions, the lemniscate functions satisfy argument sum and difference identities. The original identity used by Fagnano for bisection of the lemniscate was:<ref>{{harvp|Ayoub|1984}}; {{harvp|Prasolov|Solovyev|1997}}</ref>
: <math>\
{1 + \operatorname{sl^2}u\, \operatorname{sl^2}v}</math>
Line 186 ⟶ 185:
:<math>\begin{aligned}
\
&= \
= \frac{\
{1 + \
\
&= \
\
&= \
= \frac{\
{1 - \
\
&= \
\end{aligned}</math>
Line 210 ⟶ 209:
:<math>\begin{aligned}
\
&= \frac{\
{\
&= \frac{\
- i \frac{\
\\[12mu]
\
&= \frac{\
{\
&= \frac{\
+ i \frac{\
\end{aligned}</math>
Gauss discovered that
:<math>\frac{\
where <math>u,v\in\mathbb{C}</math> such that both sides are well-defined.
Also
:<math>\
where <math>u,v\in\mathbb{C}</math> such that both sides are well-defined; this resembles the trigonometric analog
:<math>\sin (u+v)\sin (u-v)=\sin^2u-\sin^2v.</math>
Line 235 ⟶ 234:
:<math>
\
</math>
:<math>
\
</math>
Line 245 ⟶ 244:
:<math>
\
</math>
:<math>
\
</math>
Line 255 ⟶ 254:
:<math>
\
</math>
:<math>
\
</math>
Note the "reverse symmetry" of the coefficients of numerator and denominator of <math>\
===Lemnatomic polynomials===
Line 268 ⟶ 267:
Let <math>L</math> be the [[Lattice (group)|lattice]]
:<math>L=\mathbb{Z}(1+i)\varpi +\mathbb{Z}(1-i)\varpi.</math>
Furthermore, let <math>K=\mathbb{Q}(i)</math>, <math>\mathcal{O}=\mathbb{Z}[i]</math>, <math>z\in\mathbb{C}</math>, <math>\beta=m+in</math>, <math>\gamma=m'+in'</math> (where <math>m,n,m',n'\in\mathbb{Z}</math>), <math>m+n</math> be odd, <math>m'+n'</math> be odd, <math>\gamma\equiv 1\,\operatorname{mod}\, 2(1+i)</math> and <math>\
:<math>M_\beta (x)=i^\varepsilon x \frac{P_\beta (x^4)}{Q_\beta (x^4)}</math>
for some coprime polynomials <math>P_\beta (x), Q_\beta (x)\in \mathcal{O}[x]</math>
and some <math>\varepsilon\in \{0,1,2,3\}</math><ref>In fact, <math>i^\varepsilon=\
:<math>xP_\beta (x^4)=\prod_{\gamma |\beta}\Lambda_\gamma (x)</math>
and
:<math>\Lambda_\beta (x)=\prod_{[\alpha]\in (\mathcal{O}/\beta\mathcal{O})^\times}(x-\
where <math>\delta_\beta</math> is any <math>\beta</math>-[[Torsion (algebra)|torsion]] generator (i.e. <math>\delta_\beta \in (1/\beta)L</math> and <math>[\delta_\beta]\in (1/\beta)L/L</math> generates <math>(1/\beta)L/L</math> as an <math>\mathcal{O}</math>-[[Module (mathematics)|module]]). Examples of <math>\beta</math>-torsion generators include <math>2\varpi/\beta</math> and <math>(1+i)\varpi/\beta</math>. The polynomial <math>\Lambda_\beta (x)\in\mathcal{O}[x]</math> is called the <math>\beta</math>-th '''lemnatomic polynomial'''. It is monic and is irreducible over <math>K</math>. The lemnatomic polynomials are the "lemniscate analogs" of the [[cyclotomic polynomials]],<ref name="CH">{{harvp|Cox|Hyde|2014}}</ref>
:<math>\Phi_k(x)=\prod_{[a]\in (\mathbb{Z}/k\mathbb{Z})^\times}(x-\zeta_k^a).</math>
The <math>\beta</math>-th lemnatomic polynomial <math>\Lambda_\beta(x)</math> is the [[Minimal polynomial (field theory)|minimal polynomial]] of <math>\
:<math>\Lambda_5(x)=x^{16}+52x^{12}-26x^8-12x^4+1,</math>
and<ref>{{harvp|Gómez-Molleda|Lario|2019}}</ref>
Line 298 ⟶ 297:
{| class="wikitable"
|-
! <math>n</math> !! <math>\
|-
| <math> 1</math>
Line 377 ⟶ 376:
<math>\mathcal{L}</math> is parametrized in terms of the arc length <math>s</math> from the point <math>(1,0)</math> by<ref>{{harvp|Reinhardt|Walker|2010a}} [https://dlmf.nist.gov/22.18#E6 §22.18.E6]</ref>
:<math>(x(s),y(s))=\left(\frac{\
The notation <math>\tilde{\
The lemniscate integral and lemniscate functions satisfy an argument duplication identity discovered by Fagnano in 1718:<ref>{{harvp|Siegel|1969}}; {{harvp|Schappacher|1997}}</ref>
Line 389 ⟶ 388:
Later mathematicians generalized this result. Analogously to the [[constructible polygon]]s in the circle, the lemniscate can be divided into {{tmath|n}} sections of equal arc length using only [[straightedge and compass construction|straightedge and compass]] if and only if {{tmath|n}} is of the form <math>n = 2^kp_1p_2\cdots p_m</math> where {{tmath|k}} is a non-negative [[integer]] and each {{tmath|p_i}} (if any) is a distinct [[Fermat prime]].<ref>Such numbers are OEIS sequence [[oeis:A003401|A003401]].</ref> The "if" part of the theorem was proved by [[Niels Henrik Abel|Niels Abel]] in 1827–1828, and the "only if" part was proved by [[Michael Rosen (mathematician)|Michael Rosen]] in 1981.<ref>{{harvp|Abel|1827–1828}}; {{harvp|Rosen|1981}}; {{harvp|Prasolov|Solovyev|1997}}</ref> Equivalently, the lemniscate can be divided into {{tmath|n}} sections of equal arc length using only straightedge and compass if and only if <math>\varphi (n)</math> is a [[power of two]] (where <math>\varphi</math> is [[Euler's totient function]]). The lemniscate is ''not'' assumed to be already drawn, as that would go against the rules of straightedge and compass constructions; instead, it is assumed that we are given only two points by which the lemniscate is defined, such as its center and radial point (one of the two points on the lemniscate such that their distance from the center is maximal) or its two foci.
Let <math>r_j=\
:<math>\left(r_j\sqrt{\tfrac12\bigl(1+r_j^2\bigr)},\ (-1)^{\left\lfloor 4j/n\right\rfloor} \sqrt{\tfrac12r_j^2\bigl(1-r_j^2\bigr)}\right),\quad j\in\{1,2,\ldots ,n\}</math>
where <math>\lfloor\cdot\rfloor</math> is the [[floor function]]. See [[#Specific values|below]] for some specific values of <math>\
=== Arc length of rectangular elastica ===
Line 407 ⟶ 406:
:<math>u=\int_0^{\varphi}r(\theta)\, \mathrm d\theta=\int_0^{\varphi}\frac{\mathrm d\theta}{\sqrt{1+\sin^2\theta}}.</math>
If <math>E</math> is the projection of <math>D</math> on the x-axis and if <math>F</math> is the projection of <math>C</math> on the x-axis, then the lemniscate elliptic functions are given by
:<math>\
:<math>\tilde{\
== Series Identities ==
Line 415 ⟶ 414:
The [[power series]] expansion of the lemniscate sine at the origin is<ref>{{cite web|url=https://oeis.org/A104203|website=The On-Line Encyclopedia of Integer Sequences|title=A104203}}</ref>
:<math>\
where the coefficients <math>a_n</math> are determined as follows:
:<math>n\not\equiv 1\pmod 4\implies a_n=0,</math>
Line 424 ⟶ 423:
The expansion can be equivalently written as<ref>{{Cite book |last1=Lomont |first1=J.S.|last2=Brillhart|first2=John|title=Elliptic Polynomials|publisher=CRC Press |year=2001 |isbn=1-58488-210-7|pages=12, 44}}</ref>
:<math>\
where
:<math>p_{n+2}=-12\sum_{j=0}^n\binom{2n+2}{2j+2}p_{n-j}\sum_{k=0}^j \binom{2j+1}{2k+1}p_k p_{j-k},\quad p_0=1,\, p_1=0.</math>
The power series expansion of <math>\tilde{\
:<math>\tilde{\
where <math>\alpha_n=0</math> if <math>n</math> is even and<ref name="OEIS_sl_tilde" />
:<math>\alpha_n=\sqrt{2}\frac{\pi}{\varpi}\frac{(-1)^{(n-1)/2}}{n!}\sum_{k=1}^{\infty}\frac{(2k\pi/\varpi)^{n+1}}{\cosh k\pi},\quad \left|\alpha_n\right|\sim 2^{n+5/2}\frac{n+1}{\varpi^{n+2}}</math>
Line 435 ⟶ 434:
The expansion can be equivalently written as<ref>{{Cite book |last1=Lomont |first1=J.S.|last2=Brillhart|first2=John|title=Elliptic Polynomials|publisher=CRC Press |year=2001 |isbn=1-58488-210-7}} p. 79, eq. 5.36</ref>
:<math>\tilde{\
where
:<math>s_{n+2}=3 s_{n+1} +24 \sum_{j=0}^n \binom{2n+2}{2j+2} s_{n-j} \sum_{k=0}^j \binom{2j+1}{2k+1} s_k s_{j-k},\quad s_0=1,\, s_1=3,</math>
Line 441 ⟶ 440:
For the lemniscate cosine,<ref>{{Cite book |last1=Lomont |first1=J.S.|last2=Brillhart|first2=John|title=Elliptic Polynomials|publisher=CRC Press |year=2001 |isbn=1-58488-210-7}} p. 79, eq. 5. 36 and p. 78, eq. 5.33</ref>
:<math>\
:<math>\tilde{\
where
:<math>r_{n+2}=3 \sum_{j=0}^n \binom{2n+2}{2j+2} r_{n-j} \sum_{k=0}^j \binom{2j+1}{2k+1} r_k r_{j-k},\quad r_0=1,\, r_1=0,</math>
Line 453 ⟶ 452:
:<math>R(s)^{-2}+R(is)^{-2}=2,\quad \left|\operatorname{Re}s\right|< \frac{\varpi}{2},\left|\operatorname{Im}s\right|< \frac{\varpi}{2}.</math>
There is a close relation between the lemniscate functions and <math>R(s)</math>. Indeed,<ref name="OEIS_sl_tilde" /><ref name="OEIS_cl_tilde">{{cite web | url=https://oeis.org/A289695 | title=A289695 - Oeis }}</ref>
:<math>\tilde{\
:<math>\tilde{\
and
:<math>R(s)=\frac{1}{\sqrt{1+\
|<\frac{\varpi}{2}.</math>
===Continued fractions===
For <math>z\in\mathbb{C}\setminus\{0\}</math>:<ref>{{Cite book |last1=Wall |first1=H. S. |title=Analytic Theory of Continued Fractions |publisher=Chelsea Publishing Company |year=1948 |pages=374–375}}</ref>
:<math>\int_0^\infty e^{-tz\sqrt{2}}\
:<math>\int_0^\infty e^{-tz\sqrt{2}}\
=== Methods of computation ===
{{quote box
| quote = A fast algorithm, returning approximations to <math>\
{{ubl |item_style=padding:0.2em 0 0 1.6em;
Line 491 ⟶ 490:
}}
Several methods of computing <math>\
A [[Hyperbolic function|hyperbolic]] series method:<ref>{{harvp|Reinhardt|Walker|2010a}} [https://dlmf.nist.gov/22.12.12 §22.12.12]</ref><ref>In general, <math>\sinh(x-n\pi)</math> and <math>\sin (x-n\pi i)=-i\sinh (ix+n\pi)</math> are not equivalent, but the resulting infinite sum is the same.</ref>
:<math>\
:<math>\frac{1}{\
[[Fourier series]] method:<ref>{{harvp|Reinhardt|Walker|2010a}} [https://dlmf.nist.gov/22.11 §22.11]</ref>
:<math>\
:<math>\
:<math>\frac{1}{\
The lemniscate functions can be computed more rapidly by
:<math>\begin{align}\
\
where
Line 520 ⟶ 519:
Fourier series for the logarithm of the lemniscate sine:
:<math>\ln \
The following series identities were discovered by [[Srinivasa Ramanujan|Ramanujan]]:<ref>{{harvp|Berndt|1994}} p. 247, 248, 253</ref>
:<math>\frac{\varpi ^2}{\pi ^2\
:<math>\arctan\
The functions <math>\tilde{\
:<math>\tilde{\
:<math>\tilde{\
:<math>\tilde{\
:<math>\tilde{\
The following identities come from product representations of the theta functions:<ref>{{harvp|Whittaker|Watson|1927}}</ref>
Line 544 ⟶ 543:
Since the lemniscate sine is a meromorphic function in the whole complex plane, it can be written as a ratio of [[entire function]]s. Gauss showed that {{math|sl}} has the following product expansion, reflecting the distribution of its zeros and poles:<ref name="EL227">{{harvp|Eymard|Lafon|2004}} p. 227.</ref>
:<math>\
where
Line 561 ⟶ 560:
:<math>\frac{N'(z)}{N(z)}=\sum_{n=0}^\infty 2^{4n}(1-(-1)^n 2^{2n})\mathrm{H}_{4n}\frac{z^{4n-1}}{(4n)!},\quad \left|z\right|<\frac{\varpi}{\sqrt{2}}.</math>
It is known that
:<math>\frac{1}{\
Then from
:<math>\frac{\mathrm d}{\mathrm dz}\frac{\
and
:<math>\
we get
:<math>\frac{\
Hence
:<math>\frac{\
Therefore
:<math>\
for some constant <math>C</math> for <math>\left|z\right|<\varpi/\sqrt{2}</math> but this result holds for all <math>z\in\mathbb{C}</math> by analytic continuation. Using
:<math>\lim_{z\to 0}\frac{\
gives <math>C=1</math> which completes the proof. <math>\blacksquare</math>
Line 583 ⟶ 582:
The shifting formulas
:<math>M(z+2\varpi)=e^{2\frac{\pi}{\varpi}(z+\varpi)}M(z),\quad M(z+2\varpi i)=e^{-2\frac{\pi}{\varpi}(iz-\varpi)}M(z)</math>
imply that <math>f</math> is an elliptic function with periods <math>2\varpi</math> and <math>2\varpi i</math>, just as <math>\
It follows that the function <math>g</math> defined by
:<math>g(z)=\frac{\
when patched, is an elliptic function without poles. By [[Liouville's theorem (complex analysis)|Liouville's theorem]], it is a constant. By using <math>\
{{Collapse bottom}}
Gauss conjectured that <math>\ln N(\varpi)=\pi/2</math> (this later turned out to be true) and commented that this “is most remarkable and a proof of this property promises the most serious increase in analysis”.<ref>{{harvp|Bottazzini|Gray|2013}} p. 58</ref> Gauss expanded the products for <math>M</math> and <math>N</math> as infinite series (see below). He also discovered several identities involving the functions <math>M</math> and <math>N</math>, such as
Line 606 ⟶ 605:
Therefore, a <math>3</math>-division polynomial is
:<math>-X^9-6X^5+3X</math>
(meaning one of its roots is <math>\
The equations arrived at by this process are the lemniscate analogs of
:<math>X^n=1</math>
(so that <math>e^{2\pi i/n}</math> is one of the solutions) which comes up when dividing the unit circle into <math>n</math> arcs of equal length. In the following note, the first few coefficients of the monic normalization of such <math>\beta</math>-division polynomials are described symbolically in terms of <math>\beta</math>.</ref><ref>By utilizing the power series expansion of the <math>N</math> function, it can be proved that a polynomial having <math>\
:<math>\sum_{n=0}^{(\beta\overline{\beta}-1)/4}a_{4n+1}(\beta)X^{\beta\overline{\beta}-4n}</math>
where
Line 620 ⟶ 619:
:<math>N(z)=1+2\frac{z^4}{4!}-4\frac{z^8}{8!}+408\frac{z^{12}}{12!}+\cdots,\quad z\in\mathbb{C}.</math>
This can be contrasted with the power series of <math>\
We define <math>S</math> and <math>T</math> by
:<math>S(z)=N\left(\frac{z}{1+i}\right)^2-iM\left(\frac{z}{1+i}\right)^2,\quad T(z)=S(iz).</math>
Then the lemniscate cosine can be written as
:<math>\
where<ref>{{cite book |last=Zhuravskiy |first=A. M. |title=Spravochnik po ellipticheskim funktsiyam |publisher=Izd. Akad. Nauk. U.S.S.R. |year=1941 |language=Russian}}</ref>
Line 647 ⟶ 646:
:<math>N(3z)=N(z)^9+6M(z)^4N(z)^5-3M(z)^8N(z),</math>
so
:<math>\
On dividing the numerator and the denominator by <math>N(z)^9</math>, we obtain the triplication formula for <math>\
:<math>\
Gauss' <math>M</math> and <math>N</math> satisfy the following system of differential equations:
Line 657 ⟶ 656:
:<math>X(z)X''''(z)=4X'(z)X'''(z)-3X''(z)^2+2X(z)^2,\quad z\in\mathbb{C}.</math>
The functions can be also expressed by integrals involving elliptic functions:
:<math>M(z)=z\exp\left(-\int_0^z\int_0^w \left(\frac{1}{\
:<math>N(z)=\exp\left(\int_0^z\int_0^w \
where the contours do not cross the poles; while the innermost integrals are path-independent, the outermost ones are path-dependent; however, the path dependence cancels out with the non-injectivity of the complex [[exponential function]].
Line 676 ⟶ 675:
The square of the lemniscate sine can be represented as
:<math>\
where the second and third argument of <math>\wp</math> denote the lattice invariants {{tmath|g_2}} and {{tmath|g_3}}. The lemniscate sine is a [[rational function]] in the Weierstrass elliptic function and its derivative:<ref>{{harvp|Eymard|Lafon|2004}} p. 234</ref>
:<math>\
The lemniscate functions can also be written in terms of [[Jacobi elliptic functions]]. The Jacobi elliptic functions <math>\operatorname{sn}</math> and <math>\operatorname{cd}</math> with positive real elliptic modulus have an "upright" rectangular lattice aligned with real and imaginary axes. Alternately, the functions <math>\operatorname{sn}</math> and <math>\operatorname{cd}</math> with modulus {{tmath|i}} (and <math>\operatorname{sd}</math> and <math>\operatorname{cn}</math> with modulus <math>1/\sqrt{2}</math>) have a square period lattice rotated 1/8 turn.<ref>{{Cite book |last1=Armitage |first1=J. V. |title=Elliptic Functions |last2=Eberlein |first2=W. F. |publisher=Cambridge University Press |year=2006 |isbn=978-0-521-78563-1 |page=49}}</ref><ref>The identity <math>\
:<math> \
:<math> \
where the second arguments denote the elliptic modulus <math>k</math>.
The functions <math>\tilde{\
:<math>\tilde{\
:<math>\tilde{\
=== Relation to the modular lambda function ===
Line 699 ⟶ 698:
:<math>
\prod_{k=1}^n \;{\
=\sqrt[8]{\frac{\lambda ((2n+1)i)}{1-\lambda ((2n+1)i)}}</math>
Line 705 ⟶ 704:
:<math>\begin{aligned}
&{\
&\quad {}= \sqrt[8]{\frac{\lambda (7i)}{1-\lambda (7i)}}
= {\tan}\Bigl({\tfrac{1}{2}\arccsc}\Bigl(\tfrac{1}{2}\sqrt{8\sqrt{7}+21}+\tfrac{1}{2}\sqrt{7}+1\Bigr)\Bigr)
Line 711 ⟶ 710:
&\quad {}= \frac 2 {2 + \sqrt{7} + \sqrt{21 + 8 \sqrt{7}} + \sqrt{2 {14 + 6 \sqrt{7} + \sqrt{455 + 172 \sqrt{7}}}}}
\\[18mu]
& {\
&\quad {}= \sqrt[8]{\frac{\lambda (9i)}{1-\lambda (9i)}}
= {\tan}\Biggl( \frac\pi4 - {\arctan}\Biggl(\frac{2\sqrt[3]{2\sqrt{3}-2}-2\sqrt[3]{2-\sqrt{3}}+\sqrt{3}-1}{\sqrt[4]{12}}\Biggr)\Biggr)
Line 731 ⟶ 730:
:<math> \operatorname{arccl} x = \int_{x}^{1} \frac{\mathrm dt}{\sqrt{1-t^4}} = \tfrac12\varpi - \operatorname{arcsl}x</math>
For {{tmath|x}} in the interval <math>-1 \leq x \leq 1</math>, <math>\
For the halving of the lemniscate arc length these formulas are valid:{{cn|date=September 2024}}
:<math>\begin{aligned}
{\
{\
\end{aligned}</math>
Line 830 ⟶ 829:
The hyperbolic lemniscate functions can be expressed in terms of lemniscate sine and lemniscate cosine:
:<math>\operatorname{slh}\bigl(\sqrt2 z\bigr) = \frac{(1+\
:<math>\operatorname{clh}\bigl(\sqrt2 z\bigr) = \frac{(1 + \
But there is also a relation to the [[Jacobi elliptic functions]] with the elliptic modulus one by square root of two:
Line 843 ⟶ 842:
:<math>\operatorname{slh}z
= \frac{1-i}{\sqrt2} \
= \frac{\
</math>
Line 888 ⟶ 887:
The functions tlh and ctlh fulfill the identities described in the differential equation mentioned:
:<math>\text{tlh}(\sqrt{2}\,u) = \sin_{4}(\sqrt{2}\,u) = \
:<math>\text{ctlh}(\sqrt{2}\,u) = \cos_{4}(\sqrt{2}\,u) = \
The functional designation sl stands for the lemniscatic sine and the designation cl stands for the lemniscatic cosine.
Line 921 ⟶ 920:
The solutions to this system of equations are as follows:
:<math>x(w) = \
:<math>y(w) = \
The following therefore applies to the quotient:
:<math>\frac{y(w)}{x(w)} = \frac{\
The functions x(w) and y(w) are called '''cotangent hyperbolic lemniscatus''' and '''hyperbolic tangent'''.
:<math>x(w) = \text{ctlh}(w) </math>
Line 1,110 ⟶ 1,109:
In [[algebraic number theory]], every finite [[abelian extension]] of the [[Gaussian rational]]s <math>\mathbb{Q}(i)</math> is a [[Field extension#Subfield|subfield]] of <math>\mathbb{Q}(i,\omega_n)</math> for some positive integer <math>n</math>.<ref name="CH"/><ref name="Cox508509">{{harvp|Cox|2012}} p. 508, 509</ref> This is analogous to the [[Kronecker–Weber theorem]] for the rational numbers <math>\mathbb{Q}</math> which is based on division of the circle – in particular, every finite abelian extension of <math>\mathbb{Q}</math> is a subfield of <math>\mathbb{Q}(\zeta_n)</math> for some positive integer <math>n</math>. Both are special cases of Kronecker's Jugendtraum, which became [[Hilbert's twelfth problem]].
The [[Field (mathematics)|field]] <math>\mathbb{Q}(i,\
===Hurwitz numbers===
Line 1,129 ⟶ 1,128:
where <math>\zeta</math> is the [[Riemann zeta function]].
The '''Hurwitz numbers''' <math>\mathrm{H}_n,</math> named after [[Adolf Hurwitz]], are the "lemniscate analogs" of the Bernoulli numbers. They can be defined by<ref name="Arakawa">{{Cite book |last1=Arakawa |first1=Tsuneo |last2=Ibukiyama| first2=Tomoyoshi |last3=Kaneko|first3=Masanobu|title=Bernoulli Numbers and Zeta Functions |publisher=Springer |year=2014 |isbn=978-4-431-54918-5}} p. 203—206</ref><ref>Equivalently, <math>\mathrm{H}_n=-\lim_{z\to 0}\frac{\mathrm d^n}{\mathrm dz^n} \left(\frac{(1+i)z/2}{\
where <math>n\ge 4</math> and <math>\mathcal{E}(\cdot;i)</math> is the [[Jacobi elliptic functions#Definition in terms of inverses of elliptic integrals|Jacobi epsilon function]] with modulus <math>i</math>.</ref>
Line 1,192 ⟶ 1,191:
====Appearances in Laurent series====
The Hurwitz numbers appear in several [[Laurent series]] expansions related to the lemniscate functions:<ref>Arakawa et al. (2014) define <math>\mathrm{H}_{4n}</math> by the expansion of <math>1/\
:<math>\begin{align}
\
&= \sum_{n=1}^\infty \frac{2^{4n}(1-(-1)^{n} 2^{2n})\mathrm{H}_{4n}}{4n}\frac{z^{4n-2}}{(4n-2)!},\quad
\left|z\right|<\frac{\varpi}{\sqrt{2}} \\
\frac{\
&= \frac{1}{z}-\sum_{n=1}^\infty \frac{2^{4n}(2-(-1)^n 2^{2n})\mathrm{H}_{4n}}{4n}\frac{z^{4n-1}}{(4n-1)!},\quad
\left|z\right|<\frac{\varpi}{\sqrt{2}} \\
\frac{1}{\
&= \frac{1}{z}-\sum_{n=1}^\infty \frac{2^{2n} ((-1)^n 2-2^{2n})\mathrm{H}_{4n}}{4n}\frac{z^{4n-1}}{(4n-1)!},\quad
\left|z\right|<\varpi \\
\frac{1}{\
&= \frac{1}{z^2}+\sum_{n=1}^\infty \frac{2^{4n}\mathrm{H}_{4n}}{4n}\frac{z^{4n-2}}{(4n-2)!},\quad
\left|z\right|<\varpi
Line 1,222 ⟶ 1,221:
If <math>a</math> and <math>p</math> are coprime, then there exist numbers <math>p'\in\mathbb{Z}[i]</math> (see<ref>{{cite journal |last1=Eisenstein |first1=G.
|title=Beiträge zur Theorie der elliptischen Functionen |language=German|journal=Journal für die reine und angewandte Mathematik|date=1846 |volume=30| url=https://gdz.sub.uni-goettingen.de/id/PPN243919689_0030?tify=%7B%22pages%22%3A%5B202%5D%2C%22view%22%3A%22scan%22%7D}} Eisenstein uses <math>\varphi=\
:<math>\left(\frac{a}{p}\right)_4=\prod_{p'} \frac{\
This theorem is analogous to
:<math>\left(\frac{a}{p}\right)=\prod_{n=1}^{\frac{p-1}{2}}\frac{\sin (2\pi a n/p)}{\sin (2\pi n/p)}</math>
Line 1,344 ⟶ 1,343:
== External links ==
* {{Cite episode |last1=Parker |first1=Matt |author-link1=Matt Parker |title=What is the area of a Squircle?|url=https://www.youtube.com/watch?v=gjtTcyWL0NA |series=Stand-up Maths |date=2021 |network=YouTube }}{{cbignore}}
* {{Cite episode |last=Ramalingam |first=Muthu Veerappan|title=Bernoulli Lemniscate and the Squircle <math>||</math> A remarkable Geometric fun fact!!? |url=https://www.youtube.com/watch?v=mAzIE5OkqWE |series=Act of Learning |date=2023 |network=YouTube}}{{cbignore}} Relation shown in the video amounts to <math>\
|