Tensor decomposition: Difference between revisions

Content deleted Content added
Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.5
Citation bot (talk | contribs)
Added hdl. Removed URL that duplicated identifier. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 659/967
 
Line 2:
{{Refimprove|date=June 2021}}
 
In [[multilinear algebra]], a '''tensor decomposition''' is any scheme for expressing a [[Tensor (machine learning)|"data tensor"]] (M-way array) as a sequence of elementary operations acting on other, often simpler tensors.<ref name=VasilescuDSP>{{cite journal|first1=MAO|last1=Vasilescu|first2=D|last2=Terzopoulos|title=Multilinear (tensor) image synthesis, analysis, and recognition [exploratory dsp]|journal=IEEE Signal Processing Magazine|date=2007 |volume=24|issue=6|pages=118–123|doi=10.1109/MSP.2007.906024 |bibcode=2007ISPM...24R.118V }}</ref><ref>{{Cite journal |last1=Kolda |first1=Tamara G. |last2=Bader |first2=Brett W. |date=2009-08-06 |title=Tensor Decompositions and Applications |url=http://epubs.siam.org/doi/10.1137/07070111X |journal=SIAM Review |language=en |volume=51 |issue=3 |pages=455–500 |doi=10.1137/07070111X |bibcode=2009SIAMR..51..455K |s2cid=16074195 |issn=0036-1445|url-access=subscription }}</ref><ref>{{Cite journal |last1=Sidiropoulos |first1=Nicholas D. |last2=De Lathauwer |first2=Lieven |last3=Fu |first3=Xiao |last4=Huang |first4=Kejun |last5=Papalexakis |first5=Evangelos E. |last6=Faloutsos |first6=Christos |date=2017-07-01 |title=Tensor Decomposition for Signal Processing and Machine Learning |url=https://ieeexplore.ieee.org/document/7891546 |journal=IEEE Transactions on Signal Processing |volume=65 |issue=13 |pages=3551–3582 |doi=10.1109/TSP.2017.2690524 |arxiv=1607.01668 |bibcode=2017ITSP...65.3551S |s2cid=16321768 |issn=1053-587X}}</ref> Many tensor decompositions generalize some [[matrix decomposition]]s.<ref>{{Cite journal|date=2013-05-01|title=General tensor decomposition, moment matrices and applications|url=https://www.sciencedirect.com/science/article/pii/S0747717112001290|journal=Journal of Symbolic Computation|language=en|volume=52|pages=51–71|doi=10.1016/j.jsc.2012.05.012|issn=0747-7171|arxiv=1105.1229|last1=Bernardi |first1=A. |last2=Brachat |first2=J. |last3=Comon |first3=P. |last4=Mourrain |first4=B. |hdl=11572/134905 |s2cid=14181289 }}</ref>
 
[[Tensors]] are generalizations of matrices to higher dimensions (or rather to higher orders, i.e. the higher number of dimensions) and can consequently be treated as multidimensional fields.<ref name="VasilescuDSP"/><ref>{{Cite arXiv |last1=Rabanser |first1=Stephan |last2=Shchur |first2=Oleksandr |last3=Günnemann |first3=Stephan |date=2017 |title=Introduction to Tensor Decompositions and their Applications in Machine Learning |class=stat.ML |eprint=1711.10781}}</ref>