Content deleted Content added
Pythoncoder (talk | contribs) Commenting on submission |
Citation bot (talk | contribs) Add: hdl, issue, isbn, arxiv. | Use this bot. Report bugs. | Suggested by Лисан аль-Гаиб | #UCB_webform 18/412 |
||
Line 17:
}}
'''Open-system formulations in [[quantum computing]]''' are theoretical methods used to describe how [[quantum computer|quantum computers]] interact with their [[Environment (systems)|environment]], including [[Quantum noise|noise]] and [[Quantum decoherence|decoherence]]. These approaches provide tools to model environmental effects, predict [[Quantum error correction|errors]], and support [[Quantum error correction|error correction]] strategies using frameworks such as the [[Lindblad equation]] and the [[Redfield equation]] equations.<ref name="BreuerPetruccione">{{cite book |last1=Breuer |first1=Heinz-Peter |last2=Petruccione |first2=Francesco |title=The Theory of Open Quantum Systems |publisher=Oxford University Press |year=2002 |isbn=978-0199213900}}</ref><ref name="RivasHuelga">{{cite book |last1=Rivas |first1=Ángel |last2=Huelga |first2=Susana F. |title=Open Quantum Systems: An Introduction |series=Springer Briefs in Physics |publisher=Springer |year=2012 |doi=10.1007/978-3-642-23354-8 |arxiv=1104.5242 |isbn=978-3-642-23353-1 }}</ref><ref name="GneitingNori">{{cite journal |last1=Gneiting |first1=Clemens |last2=Nori |first2=Franco |title=Quantum evolution in open systems: Master equations and dynamical maps |journal=Journal of Statistical Physics |year=2017 |volume=168 |issue=6 |pages=1223–1240 |doi=10.1007/s10955-017-1901-0}}</ref>
== Background ==
Line 41:
<math>\frac{d\rho}{dt}=-\frac{i}{\hbar}[H,\rho]+\sum_k\left(L_k\rho L_k^\dagger-\frac12\{L_k^\dagger L_k,\rho\}\right)</math>
where <math>L_k</math> represent specific [[Quantum noise|noise processes]] such as [[Quantum decoherence#Dephasing|dephasing]]. The commutator is <math>[A,B]=AB-BA</math> and the anticommutator is <math>\{A,B\}=AB+BA</math>.<ref name="Lindblad">{{cite journal |last=Lindblad |first=Göran |title=On the generators of quantum dynamical semigroups |journal=Communications in Mathematical Physics |year=1976 |volume=48 |issue=2 |pages=119–130 |doi=10.1007/BF01608499}}</ref><ref name="GKS">{{cite journal |last1=Gorini |first1=Vittorio |last2=Kossakowski |first2=Andrzej |last3=Sudarshan |first3=E. C. G. |title=Completely positive dynamical semigroups of N-level systems |journal=Journal of Mathematical Physics |year=1976 |volume=17 |issue=5 |pages=821–825 |doi=10.1063/1.522979}}</ref>
*'''Redfield equation (non-Markovian noise)''':* For systems with [[memory effect|memory effects]], the [[Redfield equation]] is used:
Line 72:
== Further reading ==
* {{cite journal |last1=Breuer |first1=H.-P. |last2=Laine |first2=E.-M. |last3=Piilo |first3=J. |last4=Vacchini |first4=B. |title=Colloquium: Non-Markovian dynamics in open quantum systems |journal=Reviews of Modern Physics |year=2016 |volume=88 |issue=2 |page=021002 |doi=10.1103/RevModPhys.88.021002 |hdl=2434/387123 }}
{{Tech-stub}}
|