Utente:Vilnius/Sandbox: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
Vilnius (discussione | contributi)
Vilnius (discussione | contributi)
Nessun oggetto della modifica
Riga 77:
 
'''propagator.'''
 
 
 
Riga 85 ⟶ 84:
re-formulates scattering amplitudes of a set of finite energy external particles with one or more low energy external gravitons, in terms of the amplitude without the low energy gravitons.
 
In the classical limit, there is a different manifestation of the same theorem<ref>{{Cita (2)pubblicazione|nome=Arnab Priya|cognome=Saha|nome2=Biswajit|cognome2=Sahoo|nome3=Ashoke|cognome3=Sen|data=2020-04-23|titolo=Proof of the Classical Soft Graviton Theorem in D=4|rivista=arXiv:1912.06413 [gr-qc, physics:hep-th]|accesso=2023-05-02|url=http://arxiv.org/abs/1912.06413}}</ref>: here it determines the low frequency component of the gravitational wave-form produced during a scattering process in terms of the momenta and spin of the incoming and outgoing objects, without any reference to the interactions responsible for the scattering.
 
 
 
Weinberg’s soft graviton theorem<ref [1]name=":0" /> is a universal formula relating any S-matrix element in any quantum theory including gravity to a second S-matrix element which differs only by the addition of a graviton whose four-momentum is taken to zero. Remarkably, the formula is blind to the spin or any other quantum numbers of the asymptotic particles involved in the S-matrix element.
 
https://dash.harvard.edu/bitstream/handle/1/29374083/1401.7026.pdf;jsessionid=6392FB47A36DFFDF342EC0BC22893C9E?sequence=1
Riga 98:
''where p is the momentum of the particle that the photon couples to,'' <math>\epsilon</math>'' is the polarization of the photon and'' <math>p_\gamma</math>'' is the momentum of the soft-photon.  ''<math>\eta = 1</math>''for outgoing particles and'' <math>\eta = -1</math>'' for incoming ones. Finally, q is the charge of the particle.''
 
the proportionality factor relating M and M' is independent of the type of particle that the photon couples to.
 
 
 
[1] S. Weinberg, “Infrared photons and gravitons,” Phys. Rev. 140, B516 (1965);
 
ibid “The Quantum theory of fields. Vol. 1: Foundations,” Cambridge, UK: Univ. Pr. (1995).
 
(2) https://arxiv.org/abs/1912.06413
 
 
 
Weinberg re-immaginò la teoria quantistica dei campi da una prospettiva diversa, affermando il primato della relatività speciale, della meccanica quantistica e della nozione di particelle come punto di partenza. Nei suoi primi lavori ha studiato le forze a lungo raggio, come l'elettromagnetismo e la gravità, mediate da particelle senza massa, il fotone e il gravitone. Come tutte le particelle elementari, queste hanno un momento angolare intrinseco, o "spin", che si presenta in unità quantizzate: i fotoni hanno spin 1 e i gravitoni spin 2. Weinberg ha mostrato che la relatività speciale e la meccanica quantistica pongono restrizioni molto stringenti sulle interazioni delle particelle senza massa.
 
Le particelle con spin 1 devono essere descritte da teorie le cui equazioni hanno la simmetria di gauge, mentre le particelle con spin 2 devono avere le proprietà del gravitone, con una forza di accoppiamento universale comune a tutte le particelle. Questo fornisce una derivazione più profonda del principio di equivalenza assunto da Albert Einstein come punto di partenza per sviluppare la relatività generale. Nessun'altra possibilità è coerente – le forze a lungo raggio che vediamo in natura esauriscono ciò che è permesso dalla relatività speciale e dalla meccanica quantistica.
 
https://www.lescienze.it/news/2021/08/17/news/quanta_weinberg_fisico_teorico_teoria_quantistica_campi-4955567/
 
== Note ==