Georg Cantor: differenze tra le versioni
Contenuto cancellato Contenuto aggiunto
Riga 21:
== Biografia ==
Cantor
Cantor riconobbe che gli [[insieme infinito|insiemi infiniti]] possono avere differenti [[cardinalità]], separò gli [[insieme|insiemi]] in [[numerabile|numerabili]] e [[insieme non numerabile|più che numerabili]] e provò che l'insieme di tutti i [[numero razionale|numeri razionali]] <math> \mathbb{Q}</math> è numerabile, mentre l'insieme di tutti i [[numero reale|numeri reali]] <math> \mathbb{R}</math> è più che numerabile, dimostrando in questo modo che esistono almeno due ordini di infinità. Egli inventò anche il simbolo che oggi viene usato per indicare i numeri reali. Il metodo di cui si servì per condurre le sue dimostrazioni è noto come [[argomento diagonale di Cantor|metodo della diagonale di Cantor]]. In seguito cercò invano di dimostrare l'[[ipotesi del continuo]]. Cantor formulò un importantissimo principio per la definizione dei numeri reali, detto [[principio di localizzazione di Cantor|principio di localizzazione]], che risulta fondamentale anche per poter operare sul suddetto campo numerico.
|