Geodetica: differenze tra le versioni
Contenuto cancellato Contenuto aggiunto
m Bot: Aggiungo template {{interprogetto}} (FAQ) |
Funzionalità collegamenti suggeriti: 2 collegamenti inseriti. |
||
Riga 104:
:<math>\frac{d^2x^{\tau}}{ds^2} + \Gamma^{\tau}{}_{\mu \nu} \frac{dx^{\mu}}{ds}\frac{dx^{\nu}}{ds} = 0</math>.<ref>Nell'originale il simbolo di Christoffel è così indicato: <math>\Gamma^{\tau}{}_{\mu \nu}=\{\begin{smallmatrix} \tau\\ \mu\nu \end{smallmatrix}\}</math></ref>
Imporre che il generico [[simbolo di Christoffel]], un ente matematico, sia collegato all'intensità del campo gravitazionale, è un'interpretazione fisica, che Einstein basa su un [[esperimento mentale]] e un ragionamento discorsivo ma che si dimostra rigorosamente.
Bisogna ricordare che l'elemento lineare <math>ds</math> (v.relatività generale) misura qualsiasi variazione nello spazio e nel tempo. Se <math>dx</math> è una generica coordinata, il fatto che la derivata seconda rispetto all'elemento lineare è nulla significa che il corpo si muove nello spazio e nel tempo secondo incrementi costanti, che né crescono né diminuiscono.
Riga 130:
Quando le componenti sono costanti, gli effetti della gravitazione vengono trascurati (ciò non significa affatto che il moto avvenga in assenza di una forza di gravità misurabile). Per dedurre la [[formula di Newton]], che considera tali effetti, è necessario rilasciare le ipotesi e considerare un sistema di riferimento in cui le componenti variano; per un rilascio graduale, si considerano sistemi in cui variano di piccole quantità, e che all'infinito spaziale tendono ancora ai valori della matrice. «In altre parole stiamo esaminando campi gravitazionali, generati esclusivamente da materia che si trova al finito», come quelli della teoria newtoniana.
Con riferimento all'equazione precedente, tre delle componenti <math>dx^{ \mu} / ds </math> possono assumere qualsiasi valore, raggiungendo qualunque velocità adimensionale <math>\gamma</math>p purché inferiore alla [[velocità della luce]] (ossia <math>\gamma < 1 </math>). Nel sistema di riferimento adottato in tutta la relatività, la velocità è misurata da un numero puro, che vale 1 alla velocità della luce, che è la massima raggiungibile (quindi varia tra 0 e 1). Oltreché per una comodità di calcolo, la velocità è espressa come percentuale della velocità della luce, perché questa l'unica costante il cui valore di velocità resta invariato in qualunque sistema di riferimento.
:<math>\gamma = \sqrt{[dx^{ 1} /dx^{ 4}]^2 + [dx^{ 2} /dx^{ 4}]^2 + [dx^{ 3} /dx^{ 4}]^2]}</math>.
| |||