La '''gravità quantistica ada anelliloop''' ('''LQG''', dal termine inglese ''loop quantum gravity''), conosciuta anche coi termini di '''gravità ada anelliloop''', '''geometria quantistica''' e '''relatività generale canonica quantistica''', è una [[Fisica teorica|teoria fisica]] di [[gravità quantistica]], ovvero una teoria [[Quanto|quantistica]] dello [[spazio-tempo]] che cerca di unificare la [[meccanica quantistica]] e la [[relatività generale]].
== Incompatibilità tra meccanica quantistica e relatività generale ==
Nel 1986 il fisico [[india]]no [[Abhay Ashtekar]] ha riformulato le equazioni di campo della relatività generale usando ciò che oggi è conosciuto col nome di [[variabili di Ashtekar]], una variante particolare della teoria di Einstein-Cartan con una connessione complessa. Nella formulazione di Ashtekar i campi fondamentali sono una regola per il trasporto parallelo (tecnicamente una connessione) e una struttura di coordinate (detta ''vierbein'') a ogni punto.
Dal momento che la formulazione di Ashtekar era indipendente dal background, è stato possibile utilizzare glii anelliloop di Wilson come base per la quantizzazione non perturbativa della gravità. L'invarianza del [[diffeomorfismo]] esplicito (spaziale) dello [[Vuoto (fisica)|stato di vuoto]] gioca un ruolo essenziale nella regolarizzazione degli stati dell'anellodel loop di Wilson.
Intorno al 1990 [[Carlo Rovelli]] e [[Lee Smolin]] hanno ottenuto una base esplicita degli stati della geometria quantistica che è stata denominata [[rete di spin]]. In questo contesto le reti di spin si sono presentate come una generalizzazione deglidei anelliloop di Wilson necessarie per trattare glii anelliloop che si intersecano reciprocamente. Dal punto di vista matematico le reti di spin sono correlate alla teoria del gruppo di rappresentazione e possono essere usate per costruire invarianti di nodi come il polinomiale di Jones.
Divenendo strettamente correlata alla teoria quantistica topologica dei campi e alla teoria della rappresentazione di gruppo, la LQG è per la maggior parte costruita a un livello rigoroso di fisica matematica.
== Princìpi fondamentali ==
La gravità quantistica ada anelliloop fa parte di una famiglia di teorie chiamata ''gravità canonica quantistica'' ed è stata sviluppata in parallelo con la [[quantizzazione ada anelliloop]], una struttura rigorosa della quantizzazione non perturbativa della [[teoria di gauge]] a [[diffeomorfismo]] invariante. In parole più semplici è una teoria quantistica della gravità nella quale lo spazio reale in cui accadono i fenomeni fisici, o [[Evento (fisica)|eventi]], è [[Quantizzazione (fisica)|quantizzato]] (vedi anche più avanti al secondo paragrafo). Secondo questa teoria l'universo è costituito da anelli (in inglese ''loop'') delle dimensioni infinitesime di 10<sup>−35</sup> metri, ossia dieci miliardesimi di miliardesimi di miliardesimi di nanometri. Questi anelli possono contenere una certa quantità di energia che non può mai diventare infinita come in una singolarità gravitazionale, esclusa dalla teoria.
Essa conserva gli aspetti fondamentali della relatività generale, come ad esempio l'invarianza per trasformazioni di coordinate, e allo stesso tempo utilizza la quantizzazione dello spazio e del tempo alla [[scala di Planck]], caratteristica della meccanica quantistica; in questo senso combina le due teorie, tuttavia non è una ipotetica [[teoria del tutto]] poiché non dà una descrizione unificata di tutte le [[forze fondamentali]], ma descrive unicamente le proprietà quantistiche dello spaziotempo, e quindi della gravità.
I critici della LQG fanno spesso riferimento al fatto che non predice l'esistenza di ulteriori dimensioni dello spazio tempo, né la [[supersimmetria]]. La risposta dei suoi autori è che allo stato attuale, nonostante ripetute ricerche sperimentali, non vi è alcuna evidenza di altre dimensioni né di particelle supersimmetriche, che devono essere considerate solo ipotesi speculative.
I maggiori successi della gravità quantistica ada anelliloop sono:
# è una quantizzazione non perturbativa della geometria a 3 dimensioni, con operatori quantizzati di area e di volume;
# include il calcolo dell'[[Entropia (termodinamica)|entropia]] dei [[buchi neri]];
== I costituenti della LQG ==
=== Quantizzazione ada anelliloop ===
Il cuore della gravità quantistica ada anelliloop è rappresentato da una struttura per la quantizzazione non perturbativa delle teorie di gauge a diffeomorfismo invariante che può essere chiamata quantizzazione ada anelliloop. Originalmente sviluppata per quantizzare il vuoto della relatività generale in 3+1 dimensioni, il formalismo matematico aiuta la dimensionalità arbitraria dello spazio-tempo, i [[Fermione|fermioni]] (Baez e Krasnov), un [[gruppo di gauge]] arbitrario (o anche un gruppo quantistico) e la [[supersimmetria]] (Smolin) e porta alla quantizzazione della [[cinematica]] delle corrispondenti teorie di gauge a diffeomorfismo invariante. Rimane ancora molto lavoro da svolgere riguardo alla dinamica, al limite classico ed al principio di corrispondenza, necessari per effettuare esperimenti.
La quantizzazione ada anelliloop risulta dall'applicazione della quantizzazione C*-algebrica di un'algebra non canonica delle osservabili di gauge invarianti classiche. ''Non canonica'' significa che le osservabili di base quantizzate non sono coordinate generalizzate né i loro momenti coniugati. Invece vengono usati l'algebra generata dalle osservabili di reti di spin (costruiti da olonomi) e flussi di campi di forza.
Le tecniche di quantizzazione ada anelliloop sono particolarmente utili nel trattare le teorie topologiche quantistiche di campo dove esse danno corpo a modelli ''state-sum/spin-foam'' come il modello Turaev-Viro della relatività generale a 2+1 dimensioni. Una delle più conosciute teorie è la cosiddetta teoria BF in 3+1 dimensioni perché la relatività generale classica può essere formulata come una teoria BF con costrizione, e si spera che una quantizzazione significativa della gravità possa derivare dalla teoria perturbativa dei modelli BF a schiuma di spin.
=== Invarianza di Lorentz ===
== Problemi aperti ==
Nessuna teoria della gravità quantistica ([[teoria delle stringhe|stringhe]], anelliloops o altre) produce predizioni univoche che possano essere sottoposte a verifiche sperimentali. Una speranza in tal senso è venuta dalla possibilità di osservazioni astrofisiche di violazione dell'[[invarianza di Lorentz]], ma è noto da tempo che la gravità quantistica ada anelliloop non porta necessariamente alla violazione dell'invarianza di Lorentz (vedi per esempio Rovelli e Speziale 2003<ref>[[Carlo Rovelli]], Simone Speziale, [https://arxiv.org/abs/gr-qc/0205108 ''Reconcile Planck-scale discreteness and the Lorentz-Fitzgerald contraction''], ''[[Physical Review]]'' D 67, 064019 (2003) {{DOI|10.1103/PhysRevD.67.064019}}</ref>) e quindi osservazioni di questo tipo, come per esempio quelle del [[Fermi Gamma-ray Space Telescope]], non possono essere considerate argomenti a favore o a sfavore della teoria.
== Critiche dei fautori della Teoria delle stringhe ==
La LQG risolve i problemi di divergenza ultravioletta delle [[gravità semiclassica|teorie semiclassiche]] standard. Non ci sono termini divergenti all'ultravioletto negli operatori di volume e nel vincolo Hamiltoniano. Tuttavia, nella teoria esistono divergenze infrarosse, e non è ancora chiaro come trattarle.
Una critica alla teoria, comune tra i fautori della teoria della stringhe, è che la versione della teoria della gravità quantistica ada anelliloop basata sulle schiume di spin può violare l'unitarietà. È vero che la teoria viola l'unitarietà, nel senso che non esiste nella teoria un gruppo a un parametro di trasformazioni unitarie che dà l'evoluzione temporale, né una matrice S unitaria. L'assenza di queste strutture stupisce e lascia sconcertato chi viene dal mondo delle stringhe, perché abituato a pensare alla fisica in termini di spazio tempo piatto. Ma l'assenza di queste strutture è implicata dalla relatività generale, nella quale, in generale, non esiste uno spazio piatto asintotico o una simmetria per traslazione nel tempo. L'unitarietà, nel senso di coerenza dell'interpretazione probabilistica della teoria, è ovviamente rispettata dalla gravità quantistica ada anelliloop.
== Note ==
|