Symbolic method (combinatorics): Difference between revisions

Content deleted Content added
m Procedure: "set theoretic" -> "set-theoretic"
Line 11:
 
==Combinatorial sum==
The restriction of [[Union (setsset theory)|unions]] to disjoint unions is an important one; however, in the formal specification of symbolic combinatorics, it is too much trouble to keep track of which sets are disjoint. Instead, we make use of a construction that guarantees there is no intersection (''be careful, however; this affects the semantics of the operation as well''). In defining the ''combinatorial sum'' of two sets <math>\mathcal{A}</math> and <math>\mathcal{B}</math>, we mark members of each set with a distinct marker, for example <math>\circ</math> for members of <math>\mathcal{A}</math> and <math>\bullet</math> for members of <math>\mathcal{B}</math>. The combinatorial sum is then:
 
:<math>\mathcal{A} + \mathcal{B} = (\mathcal{A} \times \{\circ\}) \cup (\mathcal{B} \times \{\bullet\})</math>