Matematica greco-ellenistica: differenze tra le versioni
Contenuto cancellato Contenuto aggiunto
mNessun oggetto della modifica |
m Bot: numeri di pagina nei template citazione |
||
Riga 1:
[[File:Ancientlibraryalex.jpg|miniatura|''"La Biblioteca di Alessandria"'', resa artistica del XIX secolo dell'artista tedesco O. Von Corven, basata in parte sulle prove archeologiche disponibili all'epoca.]]
La '''matematica greco-ellenistica''' fa riferimento a testi e idee [[Matematica|matematiche]] risalenti al periodo [[Grecia arcaica|arcaico]], [[Grecia classica|classico]], [[Ellenismo|ellenistico]] e [[Impero romano|romano]], in un arco di tempo che va da circa il [[V secolo a.C.]] al [[VI secolo]], nell'area Mediterranea<ref>{{Cita web|url=https://academic.oup.com/book/9389/chapter-abstract/156223875?redirectedFrom=fulltext&login=false|titolo=Greek Mathematicians: A Group Picture|autore=Reviel Netz|sito=academic.oup.com|data=settembre 2002|lingua=en|pp=
Si può parlare semplicemente di '''matematica greca''' o '''matematica ellenica''' in base al periodo e alla zona, ma viene sempre dato rilievo all'importanza culturale della città di [[Alessandria d'Egitto]], per molti aspetti la città preminente per la cultura matematica ellenistica<ref name=":0" />.
Riga 11:
Si ritiene che la matematica greca abbia avuto inizio con [[Talete]] ([[624 a.C.]] - [[546 a.C.]] circa) e [[Pitagora]] ([[582 a.C.]] circa—[[507 a.C.]] circa). Entrambi furono probabilmente influenzati dai risultati e dalle idee della [[matematica egizia]], della [[matematica babilonese]] e della [[matematica indiana]]<ref>{{Cita libro|nome=Christoph|cognome=Riedweg|titolo=Pythagoras: his life, teaching, and influence|anno=2005|url=https://archive.org/details/pythagorashislif00ried|data=2008|editore=Cornell University Press|ISBN=978-0-8014-7452-1}}</ref>. Talete usò la [[geometria]] per risolvere problemi come il calcolo dell'altezza di una piramide e la distanza delle navi dalla riva.
Si sa molto poco della vita di Talete di Mileto, anche se è assodato che fosse uno dei [[sette savi]] della Grecia. Secondo [[Proclo]], si recò a [[Babilonia (città antica)|Babilonia]] dove imparò la matematica e altre materie, arrivando alla dimostrazione di quello che oggi è chiamato [[Teorema di Talete]]<ref name=":1">{{Cita pubblicazione|cognome=Panchenko|nome=D. V. (Dmitrii Vadimovich)|data=1993|titolo=Thales and the Origin of Theoretical Reasoning|url=https://muse.jhu.edu/article/8019|rivista=Configurations|volume=1|numero=3|pp=
Pitagora aveva viaggiato in Egitto per apprendere la matematica, la geometria e l'astronomia sotto la guida dei sacerdoti egiziani. Durante il suo soggiorno apprese importanti conoscenze matematiche<ref>{{Cita libro|nome=Sylvain|cognome=Maréchal|titolo=Viaggi Di Pitagora In Egitto, Nella Caldea, Nell'Indie, In Creta, A Sparta, In Sicilia, A Roma, A Cartagine, A Marsiglia E Nelle Gallie ; Seguiti Dalle Sue Leggi Politiche E Morali ; Prima Traduzione Italiana|url=https://books.google.it/books/about/Viaggi_Di_Pitagora_In_Egitto_Nella_Calde.html?id=vV1YAAAAcAAJ&redir_esc=y|accesso=10 giugno 2024|data=1827|editore=Andreola|lingua=it}}</ref><ref>{{Cita web|url=https://www.pitagorataranto.edu.it/old/files/Pitagora_chi_era.pdf|titolo=Pitagora}}</ref>. A lui si attribuisce la scoperta del [[teorema di Pitagora]], teorema di trigonometria su come trovare il quadrato dell'ipotenusa di un [[triangolo rettangolo]]<ref name=":2">{{Cita libro|nome=Carl B.|cognome=Boyer|nome2=Uta C.|cognome2=Merzbach|titolo=A history of mathematics|edizione=2. ed|data=1991|editore=Wiley|ISBN=978-0-471-54397-8}}</ref>. Pitagora inventò inoltre un metodo per esprimere gli [[intervalli musicali]] attraverso l'uso di rapporti matematici ovvero la [[scala pitagorica]]<ref name=":2" />. Ai [[pitagorici]] si deve anche la prima dimostrazione dell'esistenza di [[numeri irrazionali]]. È ironico che proprio un pitagorico abbia scoperto l'esistenza dei numeri irrazionali, poiché l'assunto filosofico di Pitagora e dei suoi seguaci riguardava la possibilità di spiegare tutti i fatti riconducendoli a schemi riguardanti i numeri interi e i loro rapporti (razionali)<ref name=":2" />.
Riga 29:
=== Età ellenistica e romana ===
[[File:P. Oxy. I 29.jpg|miniatura|Un frammento degli ''[[Elementi (Euclide)|Elementi]]'' di Euclide (300 a.C. circa).]]
L'era ellenistica iniziò alla fine del [[IV secolo a.C.]], in seguito alla conquista da parte di [[Alessandro Magno]] del [[Mar Mediterraneo|Mediterraneo]] orientale, dell'[[Egitto]], della [[Mesopotamia]], dell'[[altopiano iranico]], dell'[[Asia centrale]] e di parti dell'[[India]], portando alla diffusione della lingua e della cultura greca in queste regioni<ref name=":3" />. Il greco divenne la ''[[lingua franca]]'' degli studiosi in tutto il mondo ellenistico e la matematica del periodo classico si fuse con la matematica egiziana e babilonese per dare origine alla matematica ellenistica<ref name=":3">{{Cita libro|nome=Peter|cognome=Green|titolo=Alexander to Actium: the historical evolution of the Hellenistic age|edizione=Nachdr.|collana=Hellenistic culture and society|data=2008|editore=Univ. of California Press|ISBN=978-0-520-08349-3}}</ref><ref>{{Cita libro|nome=Lucio|cognome=Russo|titolo=Hellenistic Mathematics|url=http://link.springer.com/10.1007/978-3-642-18904-3_3|accesso=13 giugno 2024|data=2004|editore=Springer Berlin Heidelberg|lingua=en|pp=
La matematica e l'astronomia greche raggiunsero il loro apice durante questo periodo, e gran parte del lavoro fu rappresentato da autori come [[Euclide]] (ca. 300 a.C.), [[Archimede]] (287–212 a.C. circa), [[Apollonio di Tiana|Apollonio]] (240–190 a.C. circa ). a.C.), [[Ipparco di Nicea|Ipparco]] (190–120 a.C. circa) e [[Claudio Tolomeo]] (100–170 d.C. circa). I loro studi raggiungevano livelli molto elevanti e raramente erano compresi al di fuori di una ristretta cerchia<ref name=":4">{{Cita libro|autore=A. Jones|titolo="Greek mathematics to AD 300". Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences|anno=1994|pp=
Matematici successivi dell'epoca romana includono [[Diofanto di Alessandria|Diofanto]] (214–298 d.C. circa), noto come ''il padre dell'algebra'', [[Pappo di Alessandria|Pappo]] (290–350 d.C. circa), che compilò molti risultati importanti nella ''Collezione''<ref>{{Cita pubblicazione|nome=Bronwyn|cognome=Rideout|data=2008|titolo=Pappus Reborn : Pappus of Alexandria and the Changing Face of Analysis and Synthesis in Late Antiquity.|lingua=en|accesso=13 giugno 2024|url=http://hdl.handle.net/10092/2329}}</ref>, [[Teone di Alessandria|Teone]] (335–405 d.C. circa) e sua figlia [[Ipazia]] (370–415 d.C. circa), che curarono ''l'[[Almagesto]]'' di Tolomeo e altre opere<ref>{{Cita web|url=https://www.historyoftheancientworld.com/2012/01/theon-of-alexandria-and-hypatia/|titolo=Theon of Alexandria and Hypatia|autore=History of the Ancient World|sito=History of the Ancient World|data=17 gennaio 2012|lingua=en|accesso=13 giugno 2024}}</ref>, ed [[Eutocio]] ( <abbr>c.</abbr> 480–540 d.C.), che scrisse commenti ai trattati di Archimede e Apollonio<ref>{{Cita libro|autore=J. Mansfeld|titolo=Prolegomena Mathematica: From Apollonius of Perga to the Late Neoplatonism|anno=2016|ISBN=978-90-04-32105-2}}</ref>. Sebbene nessuno di questi matematici, ad eccezione di Diofanto, avesse opere originali e inedite, si distinguono per i loro commenti e le loro esposizioni, che hanno conservato preziosi estratti di opere scomparse o allusioni storiche che, in assenza di documenti originali, sono preziose per la loro rarità.
| |||