T2K: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
Funzionalità collegamenti suggeriti: 3 collegamenti inseriti.
FrescoBot (discussione | contributi)
m Bot: numeri di pagina nei template citazione
Riga 1:
'''T2K''' (" [[Tōkai (Ibaraki)|Tokai]] to [[Hida|Kamioka]] ") è un esperimento [[Fisica delle particelle|di fisica delle particelle]] che studia le [[Oscillazione del neutrino|oscillazioni]] dei [[Neutrino|neutrini]] da acceleratore. L'esperimento è condotto in [[Giappone]] grazie alla cooperazione internazionale di circa 500 fisici e ingegneri con oltre 60 istituti di ricerca di diversi paesi dell'Europa, dell'Asia e del Nord America <ref>{{Cita web|url=https://t2k-experiment.org/t2k/collaboration/|titolo= |accesso=31 marzo 2020}}</ref>, inoltre è un esperimento riconosciuto [[CERN|dal CERN]] (RE13).<ref>{{Cita web|url=https://greybook.cern.ch/greybook/experiment/recognized|titolo= |sito=The CERN Experimental Programme|accesso=9 marzo 2021}}</ref><ref>{{Cita web|url=https://greybook.cern.ch/greybook/experiment/detail?id=RE13|titolo= |sito=The CERN Experimental Programme|accesso=20 gennaio 2020}}</ref> In Italia l'esperimento è finanziato dall'[[Istituto nazionale di fisica nucleare|Istituto Nazionale di Fisica Nucleare]]. T2K ha cominciato la raccolta dati nel 2010; si prevede che la presa dati continuerà fino all'inizio del successore di T2K: [[Hyper-Kamiokande|l'esperimento Hyper-Kamiokande]] nel 2027.<ref name="HK-TDR">{{Cita pubblicazione|titolo=Hyper-Kamiokande Design Report|arxiv=1106.2822}}</ref>
 
T2K è stato il primo esperimento che ha osservato la comparsa di [[Neutrino elettronico|neutrini elettronici]] in un [[Fascio di particelle (spettrometria di massa)|fascio]] [[Neutrino muonico|di neutrini muonici]].<ref name="1106.2822">{{Cita pubblicazione|autore=T2K Collaboration|anno=2011|titolo=Indication of Electron Neutrino Appearance from an Accelerator-produced Off-axis Muon Neutrino Beam|rivista=Physical Review Letters|volume=107|doi=10.1103/PhysRevLett.107.041801|bibcode=2011PhRvL.107d1801A|pmid=21866992|arxiv=1106.2822|numero=4|p=041801}}</ref> Ha inoltre fornito la migliore misura al mondo del parametro di oscillazione ''θ''<sub>23</sub> <ref name="1403.1532">{{Cita pubblicazione|autore=T2K Collaboration|anno=2014|titolo=Precise Measurement of the Neutrino Mixing Parameter θ23 from Muon Neutrino Disappearance in an Off-Axis Beam|rivista=Phys. Rev. Lett.|volume=112|doi=10.1103/PhysRevLett.112.181801|bibcode=2014PhRvL.112r1801A|arxiv=1403.1532|p=181801|numero=18}}</ref> e una indicazione di una significativa asimmetria materia-antimateria nelle oscillazioni dei neutrini <ref>{{Cita pubblicazione|autore=T2K Collaboration|anno=2015|titolo=Measurements of neutrino oscillation in appearance and disappearance channels by the T2K experiment with 6.6x10E20 protons on target|rivista=Phys. Rev. D|volume=D91|numero=7|p=072010|doi=10.1103/PhysRevD.91.072010|arxiv=1502.01550}}</ref><ref name="cpnature">{{Cita pubblicazione|autore=T2K Collaboration|titolo=Constraint on the matter-antimatter symmetry-violating phase in neutrino oscillations|rivista=Nature|volume=580|numero=7803|pp=339-344|doi=10.1038/s41586-020-2177-0|arxiv=1910.03887}}</ref>. La misura dell’asimmetria dell’oscillazione neutrino-antineutrino potrebbe contribuire alla spiegazione dell’esistenza del nostro Universo [[Asimmetria barionica|dominato dalla materia]] <ref>{{Cita pubblicazione|nome=M.|cognome=Fukugita|nome2=T.|cognome2=Yanagida|data=1986-06|titolo=Barygenesis without grand unification|rivista=Physics Letters B|volume=174|numero=1|pp=45–4745-47|accesso=10 marzo 2024|doi=10.1016/0370-2693(86)91126-3|url=http://dx.doi.org/10.1016/0370-2693(86)91126-3}}</ref><ref>{{Cita pubblicazione|nome=R N|cognome=Mohapatra|nome2=S|cognome2=Antusch|nome3=K S|cognome3=Babu|data=1º novembre 2007|titolo=Theory of neutrinos: a white paper|rivista=Reports on Progress in Physics|volume=70|numero=11|pp=1757–18671757-1867|accesso=10 marzo 2024|doi=10.1088/0034-4885/70/11/R02|url=https://iopscience.iop.org/article/10.1088/0034-4885/70/11/R02}}</ref>.
 
L'intenso fascio di neutrini muonici viene prodotto nei laboratori J-PARC<ref name=":0">{{Cita web|url=https://j-parc.jp/c/en/|titolo=J-PARC Laboratory}}</ref> (Japan Proton Accelerator Research Complex) a [[Tōkai (Ibaraki)|Tokai]] nella [[prefettura di Ibaraki]], sulla costa orientale del Giappone. Il fascio è diretto verso il rivelatore lontano [[Super-Kamiokande]] situato a 295 chilometri di distanza nella città di [[Hida]], [[prefettura di Gifu]]. Le proprietà e la composizione del flusso di neutrini vengono prima misurate da un sistema di rivelatori vicini situati 280 metri (ND280) dal luogo di produzione del fascio, e poi di nuovo nel rivelatore lontano Super-Kamiokande. Il confronto dello spettro energetico e del numero di interazioni dei diversi sapori di neutrini in queste due posizioni consente di misurare la probabilità di oscillazione, determinandone numerosi parametri. [[Super-Kamiokande]] è in grado di rivelare le interazioni sia dei neutrini muonici che elettronici, e quindi misurare sia la scomparsa del flusso dei neutrini muonici che la comparsa dei neutrini elettronici nel fascio.<ref name="t2knim">{{Cita pubblicazione|autore=T2K Collaboration|anno=2011|titolo=The T2K Experiment|rivista=Nucl. Instrum. Meth. A|volume=659|pp=106-135|doi=10.1016/j.nima.2011.06.067|bibcode=2011NIMPA.659..106A|arxiv=1106.1238}}</ref>
Riga 82:
 
==== Camere a proiezione temporale ====
[[Camera a proiezione temporale|Le camere a proiezione temporale]] (TPC) sono camere rettangolari a tenuta di gas, con un piano catodico al centro e moduli MicroMegas<ref>{{Cita pubblicazione|nome=Y.|cognome=Giomataris|nome2=Ph.|cognome2=Rebourgeard|nome3=J.P.|cognome3=Robert|anno=1996|titolo=MICROMEGAS: a high-granularity position-sensitive gaseous detector for high particle-flux environments|rivista=Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment|volume=376|numero=1|pp=29–3529-35|accesso=11 marzo 2024|doi=10.1016/0168-9002(96)00175-1|url=https://linkinghub.elsevier.com/retrieve/pii/0168900296001751}}</ref> di lettura su entrambi i lati paralleli al [[catodo]]. Tre di queste camere equipaggiano ND280. Le TPC sono riempite con una miscela di gas deriva a base di [[argon]] a pressione atmosferica. Le particelle cariche che attraversano le TPC [[Ionizzazione|ionizzano]] il gas lungo il loro percorso. Gli elettroni di ionizzazione si spostano dal catodo ai lati delle TPC, dove vengono rivelati dai rivelatori MicroMegas fornendo un'immagine 3D del percorso della particella cariche nelle TPC. Le coordinate Y e Z si basano sulla posizione degli elettroni di ionizzazione rivelati sui moduli MicroMegas e la coordinata X si basa sul tempo di deriva degli elettroni. Nel campo magnetico, la curvatura di questo percorso consente di determinare [[Carica elettrica|la carica]] e [[Quantità di moto|la quantità di moto]] della particella, e la quantità di elettroni di ionizzazione per unità di distanza viene utilizzata per identificare le particelle in base alla [[Formula di Bethe|formula di Bethe-Bloch]].<ref name="t2knim" /><ref>{{Cita pubblicazione|autore=T2K ND280 TPC collaboration|coautori=et al.|titolo=Time Projection Chambers for the T2K Near Detectors|rivista=Nucl. Instrum. Meth. A|volume=637|pp=25-46|doi=10.1016/j.nima.2011.02.036|bibcode=2011NIMPA.637...25A|arxiv=1012.0865}}</ref>
 
==== Rivelatori a grana fine ====
Riga 114:
== Super-Kamiokande ==
[[File:Superkamiokande_electron_muon_discriminator.png|miniatura|rivelazione di [[Elettrone|elettroni]] e [[Muone|muoni]] nel rivelatore [[Super-Kamiokande]]]]
Il rivelatore [[Super-Kamiokande]] <ref>{{Cita pubblicazione|nome=S.|cognome=Fukuda|coautori=et al.|anno=2003|titolo=The Super-Kamiokande detector|rivista=Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment|volume=501|numero=2-3|pp=418–462418-462|doi=10.1016/S0168-9002(03)00425-X|url=https://linkinghub.elsevier.com/retrieve/pii/S016890020300425X}}</ref> si trova a 1000 m sotto terra nella miniera Mozumi, sotto il monte Ikeno nella zona Kamioka della città di Hida. Si tratta di un serbatoio [[Cilindro (geometria)|cilindrico]] [[Acciaio inossidabile|in acciaio inossidabile]] di circa 40 m di altezza e diametro, riempito con 50.000 tonnellate di [[acqua]] e dotato di circa 13.000 [[Fotomoltiplicatore|tubi fotomoltiplicatori]] (PMT). rivela un [[cono]] di [[Effetto Čerenkov|luce Cherenkov]] emesso da particelle cariche che si muovono nell'acqua più velocemente della luce. Il suo obiettivo è misurare [[Muone|i muoni]] e [[Elettrone|gli elettroni]] prodotti nelle interazioni quasielastiche con [[Interazione debole#Interazione a corrente carica|corrente carica]] (CCQE) da {{Particella subatomica|Muon neutrino}} e {{Particella subatomica|Electron neutrino}}, rispettivamente. A causa della loro massa relativamente grande, i muoni solitamente non cambiano direzione e quindi producono un cono di luce Cherenkov ben definito rivelato dai PMT come un anello chiaro e nitido. Al contrario, gli elettroni, a causa della massa più piccola, sono più suscettibili alla diffusione e quasi sempre producono [[Sciame di particelle|sciami]] elettromagnetici, osservati dai PMT come un anello con bordi sfocati. L'energia del neutrino viene calcolata in base alla direzione e all'energia del [[leptone]] carico (muone od elettrone) prodotto nell'interazione CCQE. In questo modo vengono misurati gli spettri energetici di {{Particella subatomica|Muon neutrino}} e {{Particella subatomica|Electron neutrino}}, che portano alla misurazione dei parametri [[Oscillazione del neutrino|di oscillazione]] rivelanti per la scomparsa del neutrino muonico e la comparsa del neutrino elettronico. <ref name="t2knim" /> <ref>{{Cita pubblicazione|autore=The Super-Kamiokande Collaboration|volume=501|doi=10.1016/S0168-9002(03)00425-X|bibcode=2003NIMPA.501..418F}}</ref>
 
== Storia ==
Riga 153:
===== HATPC =====
[[File:TPC_for_T2K.jpg|miniatura|TPC per l'upgrade di ND280 dell'esperimento T2K in Giappone]]
Le [[Camera a proiezione temporale|camere di proiezione temporale]] ad alto angolo (HATPC) circondano il SuperFGD nel piano perpendicolare al fascio di neutrini in arrivo. Il loro design è simile a quello delle TPC esistenti, poiché entrambi utilizzano la tecnologia dei moduli MicroMegas per la ricostruzione dei binari. Tuttavia le HATPC sono disegnate in modo a ridurre al minimo i materiali passivi. Inoltre vengono utilizzate MicroMegas con la nuova tecnologia resistiva<ref>{{Cita pubblicazione|nome=L.|cognome=Ambrosi|coautori=et al.|anno=2023|titolo=Characterization of charge spreading and gain of encapsulated resistive Micromegas detectors for the upgrade of the T2K Near Detector Time Projection Chambers|rivista=Nuclear Instruments and Methods in Physics A:|volume=1056|ppp=168534|doi=10.1016/j.nima.2023.168534|url=https://linkinghub.elsevier.com/retrieve/pii/S0168900223005247}}</ref>. Questa tecnologia consiste nell'applicare uno strato di materiale resistivo per aumentare le capacità di condivisione della carica dei moduli MicroMegas. Ciò riduce il numero di canali di lettura e consente una risoluzione spaziale anche migliore di quella delle attuali TPC<ref>{{Cita pubblicazione|nome=D.|cognome=Attié|coautori=et al|anno=2022|titolo=Characterization of resistive Micromegas detectors for the upgrade of the T2K Near Detector Time Projection Chambers|rivista=Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment|volume=1025|ppp=166109|doi=10.1016/j.nima.2021.166109|url=https://linkinghub.elsevier.com/retrieve/pii/S0168900221010111}}</ref>.
 
===== TOF =====
Riga 162:
 
==== SK-Gd ====
Il terzo elemento di miglioraramento nell’ambito di T2K–II è l’introduzione di [[gadolinio]] in Super-Kamiokande<ref name="skgd">{{Cita pubblicazione|nome=K.|cognome=Abe|coautori=et al.|anno=2022|titolo=First gadolinium loading to Super-Kamiokande|rivista=Nuclear Instruments and Methods in Physics A|volume=1027|ppp=166248|lingua=en|doi=10.1016/j.nima.2021.166248}}</ref>, che finora era riempito con acqua ultrapura. SK non è in grado di misurare la [[Carica elettrica|carica]] della particella registrata. Ciò significa che non è possibile distinguere l'interazione tra neutrino e antineutrino sulla base della carica di [[leptone]] prodotto (ad es.{{Particella subatomica|Muon-}} è prodotto da {{Particella subatomica|Muon neutrino}} mentre {{Particella subatomica|Muon+}} da {{Particella subatomica|Muon antineutrino}} ). Nelle interazioni (anti)neutrino-nucleo, a parte la produzione di leptoni carichi, dal [[Nucleone|nucleo]] viene solitamente emesso un [[Nucleo atomico|nucleone]]. A causa della [[Legge di conservazione della carica elettrica|conservazione della carica]], per i neutrini viene emesso un protone e per gli antineutrini un neutrone<ref>{{Cita pubblicazione|autore=Formaggio, J. A.|autore2=Zeller, G. P.|anno=2012|titolo=From eV to EeV: Neutrino cross sections across energy scales|rivista=Rev. Mod. Phys.|volume=84|pp=1307-1341|doi=10.1103/RevModPhys.84.1307|bibcode=2012RvMP...84.1307F|arxiv=1305.7513}}</ref><sup>: 23</sup>. Per cui la rivelazione di un neutrone in coincidenza con la rivelazione di un leptone è la firma di un evento di antineutrino.
 
L'energia minima di una particella carica per produrre [[Effetto Čerenkov|luce Cherenkov]] in acqua, proporzionale alla massa della particella, è pari a 0,8 MeV per gli elettroni, 160 MeV per i muoni e 1400 MeV per i protoni <ref>{{Cita pubblicazione|autore=Scholberg, K.|anno=2012|titolo=Supernova neutrino detection in water Cherenkov detectors|rivista=J. Phys. Conf. Ser.|volume=309|p=012028|doi=10.1088/1742-6596/309/1/012028|bibcode=2011JPhCS.309a2028S}}</ref>. Pertanto, i protoni rilasciati nelle interazioni dei neutrini sono spesso prodotti con energie al di sotto della soglia di rivelazione e rimangono inosservati. Il neutrone, essendo una particella neutra, non produce luce Cherenkov. Tuttavia, può essere [[Cattura neutronica|assorbito]] da un altro nucleo, che entra in uno [[Eccitazione (meccanica quantistica)|stato eccitato]] e durante la diseccitazione produce [[raggi gamma]]. I fotoni (raggi gamma) ad alta energia (per il gadolinio la loro energia totale è di circa 8 MeV) [[Diffusione Compton|diffondono gli elettroni]] (diffusione Compton) da un atomo e/o [[Produzione di coppia|producono coppie elettrone-positrone]], che poi producono luce Cherenkov. Il gadolinio è l'elemento naturale con la più alta sezione d'urto nella cattura di neutroni a [[energia termica]]. Per neutroni da 25 meV, la sezione d'urto del gadolinio è circa 10<sup>5</sup> volte maggiore di quella [[Idrogeno|dell'idrogeno]]. La frazione di neutroni che verrà catturata in SK è del 50% per una concentrazione di Gd dello 0,01% e del 90% per una concentrazione dello 0,1%: la concentrazione finale di Gd pianificata in SK. Il segnale derivante dalla cattura dei neutroni è ritardato di una frazione di millisecondo (il tempo in cui il neutrone viaggia nell'acqua prima della cattura, più il tempo in cui il gadolinio rimane nello stato eccitato) rispetto al segnale del leptone carico e solitamente appare entro una distanza di 50&nbsp;cm (la distanza percorsa dal neutrone prima della cattura) dal punto di interazione del neutrino. Un tale evento di doppio lampo (il primo lampo del leptone carico, il secondo lampo dei fotoni di diseccitazione di Gd) è la firma di un'interazione di antineutrino.<ref name="skgd" /><ref name="skgdnews">{{Cita web|url=http://www-sk.icrr.u-tokyo.ac.jp/sk/news/2020/08/sk-gd-detail-e.html|titolo= |accesso=7 ottobre 2021}}</ref>