Meccanica quantistica: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
FrescoBot (discussione | contributi)
m Bot: numeri di pagina nei template citazione e modifiche minori
Ho specificato informazioni
Etichette: Annullato Link a wikipedia.org Modifica visuale
Riga 67:
{{vedi anche|Dualismo onda-particella}}
[[File:Broglie Big.jpg|thumb|left|Il fisico francese [[Louis-Victor Pierre Raymond de Broglie|Louis de Broglie]], vincitore del [[premio Nobel per la fisica]] nel 1929 per aver scoperto nel 1924 che l'elettrone ha anche un comportamento ondulatorio dando vita al concetto di ''onda di materia'' e al [[dualismo onda-particella]]]]
La fisica classica fino al XIX secolo era divisa in due corpi di leggi: quelle di Newton, che descrivono i moti e la dinamica dei corpi meccanici, e quelle di Maxwell, che descrivono l'andamento e i vincoli a cui sono soggetti i campi elettromagnetici come la luce e le onde radio. A lungo si era dibattuto sulla natura della luce e alcune evidenze sperimentali, come l'[[esperimento di Young]], portavano a concludere che la luce dovesse essere considerata come un'onda.
 
Agli inizi del XX secolo alcune incongruenze teorico-sperimentali misero in crisi la concezione puramente ondulatoria della radiazione elettromagnetica, portando alla teoria, avanzata da Einstein sulla base dei primi lavori di Max Planck, nella quale fu reintrodotta in una certa misura la natura corpuscolare della luce, considerata come composta da [[fotone|fotoni]] che trasportano quantità discrete dell'energia totale dell'onda elettromagnetica. I fotoni rappresentano quindi le particelle corrispondenti alle eccitazioni elementari del campo elettromagnetico; in altri termini i campi elettrici e magnetici possono essere pensati come costituiti da particelle, ciascuna delle quali trasporta una frazione dell'energia totale del campo elettromagnetico.<ref>{{cita web|url=https://www.treccani.it/enciclopedia/fotone/|titolo=fotone|accesso=7/11/2023|lingua=it}}</ref>
 
Successivamente Louis de Broglie avanzò l'[[Ipotesi di de Broglie|ipotesi]] che la natura della materia e della radiazione non dovesse essere pensata solo in termini esclusivi ''o'' di un'onda ''o'' di una particella, ma che le due entità sono al tempo stesso ''sia'' un corpuscolo ''sia'' un'onda. A ogni corpo materiale viene associata una nuova [[lunghezza d'onda]], che, se di valore piccolissimo e difficilmente apprezzabile per i valori di massa del mondo macroscopico, assume importanza fondamentale per l'interpretazione dei fenomeni alla scala atomica e subatomica. La teoria di De Broglie fu confermata dalla scoperta della diffrazione dell'elettrone osservata nell'[[esperimento di Davisson e Germer]] del 1927.<ref>{{cita web|url=http://library.thinkquest.org/28383/nowe_teksty/htmla/2_11a.html|titolo=The Nature of Matter|accesso=1º gennaio 2013|urlmorto=sì|urlarchivio=https://web.archive.org/web/20130508062723/http://library.thinkquest.org/28383/nowe_teksty/htmla/2_11a.html|dataarchivio=8 maggio 2013|lingua=en}}</ref>
Riga 87:
{{vedi anche|Principio di indeterminazione di Heisenberg}}
 
Heisenberg nel 19271928 elaborò una formalizzazione teorica del principio suddetto, permettendo di quantificare l'indeterminazione insita nel nuovo concetto di misura.<ref>Il primo lavoro pubblicato di Heisenberg sui suoi lavori sul principio di indeterminazione sulla rivista ''Zeitschrift für Physik'' fu: {{cita pubblicazione|nome=W.|cognome=Heisenberg|titolo=Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik|rivista=Z. Phys.|volume=43|anno=1927|pp=172-198|doi=10.1007/BF01397280|numero=3–4|bibcode = 1927ZPhy...43..172H|lingua=de}}</ref> Egli enunciò che in meccanica quantistica alcune coppie di quantità fisiche, come velocità e posizione, non possono essere misurate nello stesso momento entrambe con precisione arbitraria. Tanto migliore è la precisione della misura di una delle due grandezze, tanto peggiore è la precisione nella misura dell'altra.<ref name="osservazione">«Dobbiamo assumere che c'è un limite alla precisione dei nostri poteri di osservazione e alla piccolezza del disturbo [che accompagna l'osservazione, NdT] - un limite che è inerente alla natura delle cose e non può essere superato da tecniche migliorate o dall'aumento dell'abilità da parte dell'osservatore» - P. A. M. Dirac - op. cit.</ref> In altri termini, misurare la posizione di una particella provoca una perturbazione impossibile da prevedere della sua velocità e viceversa. In formule:
 
:<math>(\Delta p)(\Delta x) \geq \frac{h}{4 \pi}</math>
Riga 128:
 
Meccanica ondulatoria è la definizione data da [[Erwin Schrödinger]] alla teoria basata sulla [[Equazione di Schrödinger|propria equazione]], considerata la formulazione ''standard'' della meccanica quantistica, la più nota e quella maggiormente insegnata in ambito accademico. Storicamente costituisce la seconda formulazione, pubblicata nel 1926 a circa sei mesi dalla meccanica delle matrici.
 
La meccanica ondulatoria è da considerare una logica quantistica: entrambe consistono nel vedere il mondo in base alla teoria e=mc"2 (Ovvero, l'energia chimica di una massa corrisponde ad essa stessa, moltiplicata per il quadrato della velocità della luce).<ref>{{Cita pubblicazione|data=2025-03-12|titolo=Meccanica quantistica|rivista=Wikipedia|lingua=it|accesso=2025-03-26|url=https://it.wikipedia.org/wiki/Meccanica_quantistica}}</ref>
 
Schrödinger scrisse nel 1926 una serie di quattro articoli intitolati "Quantizzazione come problema agli autovalori" in cui mostrò come una meccanica ondulatoria possa spiegare l'emergere di numeri interi e dei quanti, e gli insiemi di valori discreti anziché continui permessi per alcune quantità fisiche di certi sistemi (come l'energia degli elettroni nell'atomo di idrogeno). In particolare, basandosi sui lavori di De Broglie, osservò che le [[onda stazionaria|onde stazionarie]] soddisfano vincoli simili a quelli imposti dalle condizioni di quantizzazione di Bohr: