Vector quantization: Difference between revisions

Content deleted Content added
mNo edit summary
m lead format
Line 1:
{{otheruses|VQ}}
'''Vector quantization''' is a classical [[quantization]] technique from [[signal processing]] which allows the modeling of probability density functions by the distribution of prototype vectors. It was originally used for [[data compression]]. It works by dividing a large set of points ([[coordinate vector|vector]]s) into groups having approximately the same number of points closest to them. Each group is represented by its [[centroid]] point, as in [[k-means]] and some other [[clustering]] algorithms.
 
The density matching property of vector quantization is powerful, especially for identifying the density of large and high-dimensioned data. Since data points are represented by the index of their closest centroid, commonly occurring data have low error, and rare data high error. This is why VQ is suitable for [[lossy data compression]]. It can also be used for lossy data correction and [[density estimation]].