Content deleted Content added
No edit summary |
No edit summary |
||
Line 1:
'''
The main application of SRA lies in finding the [[Root (mathematics)|zeros]] of [[secular function|secular functions]]. A divide-and-conquer algorithm to find the [[eigenvalues]] and [[eigenvectors]] for various kinds of [[Matrix (mathematics)|matrices]] is well-known in [[numerical analysis]]. In a strict sense, SRA implies a specific [[interpolation]] using simple rational functions as a part of the divide-and-conquer algorithm. Since such secular functions consist of a series of rational functions with simple poles, SRA is the best candidate to interpolate the zeros of the secular function. Moreover, based on previous researches, a simple zero that lies between two adjacent poles can be considerably well interpolated by using a two-dominant-pole rational function as an approximating function.
|