Content deleted Content added
←Redirected page to Gradient descent |
new article |
||
Line 1:
In [[optimization (mathematics)|optimization]], '''Gradient method''' is an [[algorithm]] to solve problems of the form
#redirect [[Gradient descent]]▼
:<math>\min_{x\in\mathbb R^n}\; f(x)</math>
with the search directions defined by the [[gradient]] of the function at the current point. Examples of gradient methods are the [[gradient descent]] and the [[conjugate gradient]].
==See also==
{{col-begin}}
{{col-break}}
* [[Conjugate gradient]]
==References==
* {{cite book | year=1997 | title=Optimization : Algorithms and Consistent Approximations
| publisher=Springer-Verlag | isbn=0-387-94971-2 |author=Elijah Polak}}
{{Optimization algorithms}}
{{DEFAULTSORT:Gradient Descent}}
[[Category:First order methods]]
[[Category:Optimization methods]]
[[Category:Gradient methods]]
[[fr:Algorithme du gradient]]
[[ja:勾配法]]
|