Wiener–Hopf method: Difference between revisions

Content deleted Content added
m moved Wiener-Hopf to Wiener–Hopf method: replace jargon title (personal names, no noun) with a more common one (eg Springer EOM); also hypen with en-dash
adjusted dashes and the title, copyedit, mainly, math displays to conform to the MoS
Line 1:
The '''Wiener-HopfWiener–Hopf method''' technique is a mathematical technique widely used in [[applied mathematics]]. It was initially developed by [[Norbert Wiener]] and [[Eberhard Hopf]] as a method to solve simultaneoussystems of [[integral equationsequation]]s, but has found wider use in solving two-dimensional [[partial differential equationsequation]]s with mixed [[boundary conditions]] on the same boundary. In general, the method works by exploiting the [[Complex analysis|complex-analytical]] properties of transformed functions. UsuallyTypically, the standard [[Fourier transform]] is used, but examples exist using other transforms, such as the [[Mellin transform]].
 
In general, the governing equations and boundary conditions are transformed and these transforms are used to define a pair of complex functions (typically denoted with '+' and '-' subscripts) which are respectively [[analytic function|analytic]] in the upper and lower halves of the complex plane, and have growth no faster than polynomials in these regions. These two functions will also be equal to one anothercoincide on some small subsetregion of the [[complex plane]], (typically, a thin strip containing the [[real line)]]. [[Analytic continuation]] guarantees that these two functions define a single function analytic throughoutin the entire complex plane, and [[Liouville's theorem (complex analysis)|Liouville's theorem]] tells usimplies that this function mustis bean identicalunknown to[[polynomial]], somewhich unknownis polynomialoften zero or constant. Analysis of the conditions at the edges and corners of the boundary willallows one to finddetermine the orderdegree of this polynomial (which is often a constant, or even zero).
 
== Wiener-HopfWiener–Hopf Decomposition ==
The key step in many W-HWiener–Hopf problems is to decompose an arbitrary function <math>\Phi</math> into two functions <math>\Phi_{\pm}</math> with the desired properties outlined above. In general, this can be done by writing
 
<math>\Phi_+(\alpha) = \frac{1}{2\pi i} \int_{C_1} \Phi(z) \frac{dz}{z-\alpha}</math> and
Line 15:
 
==Example==
 
Let us consider the linear [[Partial differential equation|partial differential equation]] <br>
Let us consider the linear [[partial differential equation]]
<center>
 
<math>
:<math>\boldsymbol{L}_{xy}f(x,y)=0,</math>
 
</math>
</center>
where <math>\boldsymbol{L}_{xy}</math> is a linear operator which contains
derivatives with respect to <math>x</math> and <math>y</math>,
subject to the mixed conditions on <math>y=0</math>, for some prescribed
function <math>g(x)</math>,
 
<br>
:<math>f=g(x)</math> for <math>x\leq 0, \quad f_{y}=0</math> when <math>x>0</math>.
<center>
 
<math>
f=g(x)</math> for <math>x\leq 0,
</math>
</center>
<br>
<center>
<math>
f_{y}=0</math> when <math>x>0
</math>.
</center>
and decay at infinity i.e. <math>f\rightarrow 0</math>
as <math>\boldsymbol{x}\rightarrow \infty</math>. Taking a [[Fourier transform]] with respect to x results in the following [[Ordinaryordinary differential equation|ODE]]
 
<center>
: <math>\boldsymbol{L}_{y}\hat{f}(k,y)-P(k,y)\hat{f}(k,y)=0,</math>
<math>
 
\boldsymbol{L}_{y}\hat{f}(k,y)-P(k,y)\hat{f}(k,y)=0,
</math>
</center>
where <math>\boldsymbol{L}_{y}</math> is a linear operator containing
<math>y</math> derivatives only, <math>P(k,y)</math> is a known function
of <math>y</math> and <math>k</math> and
 
<br>
: <math> \hat{f}(k)=\int_{-\infty}^{\infty} f(x,y)e^{-ikx}\textrm{d}x. </math>
<center>
 
<math>
If a particular solution of this ordinary differential equation which satisfies the necessary decay at infinity
\hat{f}(k)=\int_{-\infty}^{\infty} f(x,y)e^{-ikx}\textrm{d}x.
</math>
</center>
If a particular solution of the ODE which satisfies the necessary decay at infinity
is denoted <math>\hat{F}(k,y)</math>, a general
solution can be written as
 
<center>
: <math>
\hat{f}=C(k)\hat{F}(k,y),
</math>
 
</center>
where <math>C(k)</math> is an unknown function to be determined by the boundary conditions on <math>y=0</math>.
 
The key idea is to
split <math>\hat{f}</math> into two separate functions, <math>\hat{f}_{+}</math> and <math>\hat{f}_{-}</math> which are analytic in the lower- and upper-halves of the complex plane, respectively
 
<br>
: <math> \hat{f}_{+}(k,y)=\int_{0}^{\infty} f(x,y)e^{-ikx}\textrm{d}x, </math>
<center>
 
<math>
:<math> \hat{f}_{+-}(k,y)=\int_{0-\infty}^{\infty0} f(x,y)e^{-ikx}\textrm{d}x,.
</math>
 
</br>
<math>
\hat{f}_{-}(k,y)=\int_{-\infty}^{0} f(x,y)e^{-ikx}\textrm{d}x.
</math>
</center>
The boundary conditions then give
 
<br>
: <math>
<center>
<math>
\hat{f}_{-}(k,0)+\hat{f}_{+}(k,0)
=
Line 84 ⟶ 64:
=
C(k)F(k,0)</math>
 
</center><br>
and, on taking derivatives with respect to <math>y</math>,
 
<br>
 
<center>
: <math> \hat{f}'_{-}(k,0)+\hat{f}'_{+}(k,0) =
<math>
\hat{f}'_{-}(k,0)+\hat{f} = C(k)F'_{+}(k,0). </math>
 
=
\hat{f}'_{-}(k,0)
=
C(k)F'(k,0).
</math>
</center>
Eliminating <math>C(k)</math> yields
 
<br>
: <math>
<center>
\hat{g}(k)+\hat{f}_{+}(k,0) - \hat{f}'_{-}(k,0)/K(k) = 0,</math>
<math>
 
\hat{g}(k)+\hat{f}_{+}(k,0)
-
\hat{f}'_{-}(k,0)/K(k)</math>
=
0,
</center>
where
 
<center>
: <math> K(k)=\frac{F'(k,0)}{F(k,0)}.</math>
<math>
 
K(k)
=
\frac{F'(k,0)}{F(k,0)}.
</math>
</center>
Now <math>K(k)</math> can be decomposed into the product of functions <math>K^{-}</math> and <math>K^{+}</math> which analytic in the upper-half plane or lower-half plane, respectively
 
<center>
: <math> K(k)=K^{+}(k)K^{-}(k), </math>
<math>
 
K(k)=K^{+}(k)K^{-}(k),
: </math>
</center>
<br>
<center>
<math>
\hbox{log}
K^{-}=
=
\frac{1}{2\pi i}\int_{-\infty}^{\infty} \frac{\hbox{log}(K(z))}{z-k} \textrm{d}z,
\quad
\hbox{Im}k>0,
</math>
 
<br>
: <math>
\hbox{log}
K^{+}=
=
-\frac{1}{2\pi i}\int_{-\infty}^{\infty} \frac{\hbox{log}(K(z))}{z-k} \textrm{d}z,
\quad
\hbox{Im}k<0.
</math>
 
</center>
Consequently,
 
<br>
: <math>
<center>
K_{+}(k)\hat{g}_{+}(k) + K_{+}(k)\hat{f}_{+}(k,0) =
<math>
\hat{f}'_{-}(k,0)/K_{-}(k) - K_{+}(k)\hat{g}_{+-}(k),
+
K_{+}(k)\hat{f}_{+}(k,0)
=
\hat{f}'_{-}(k,0)/K_{-}(k)
-
K_{+}(k)\hat{g}_{-}(k),
</math>
 
</center>
where it has been assumed that <math>g</math> can be broken down into functions analytic in the lower-half plane
<math>g_{+}</math> and upper-half plane <math>g_{-}</math>, respectively.
Line 160 ⟶ 114:
left- or right-hand sides in their respective half-planes. Furthermore, since it can
be shown that the functions on either side of the above equation decay at large
<math>k</math>, an application of [[Liouville's theorem (complex analysis)|Liouville's theorem]] tells usshows that this entire function is identically zero, therefore
 
is identically zero, therefore
:<brmath>
\hat{f}_{+}(k,0) = -\hat{g}_{+}(k),
<center>
<math>
\hat{f}_{+}(k,0)
=
-\hat{g}_{+}(k),
</math>
 
</center>
and so
 
<br>
: <math>
<center>
C(k) = \frac{\hat{g}(k)-\hat{g}_{+}(k)}{F(k,0)}.
<math>
C(k)
=
\frac{\hat{g}(k)-\hat{g}_{+}(k)}{F(k,0)}.
</math>
 
</center>
== See also ==
 
* [[Wiener filter]]
 
==External links==
 
* {{SpringerEOM |id=W/w097910}}
*[http://www.wikiwaves.org/index.php/Category:Wiener-Hopf Wiener-Hopf for Linear Water Waves]
* [http://www.wikiwaves.org/index.php/Category:Wiener-Hopf Wiener-Hopf method] at Wikiwaves
 
[[Category:Partial differential equations]]