Content deleted Content added
math typesetting |
|||
Line 2:
==Simple Description==
The simplest form of the formula for Steffensen's method occurs when it is used to find the zeros, or roots, of a function <math>f\ </math>, that is, to find the input value <math>x\ </math> that satisifies <math>f(x)=0\ </math>. Given an adequate starting value <math>x_0\ </math>, a sequence of values <math>x_0,\ x_1,\ x_2,\ ...,\ x_n ...</math> can be generated. Each value in the sequence is closer to the solution than the prior value, and the value <math>x_n\ </math> from the prior step generates the next step, <math>x_{n+1}\ </math> via this formula<ref>Germund Dahlquist, Åke Björck, tr. Ned Anderson (1974) ''Numerical Methods'', pp. 230-231, Prentice Hall, Englewood Cliffs, NJ</ref>:
:<math>x_{n+1} = x_n - \frac{f(x_n)}{g(x_n)}</math>
|