Integration using Euler's formula: Difference between revisions

Content deleted Content added
 
No edit summary
Line 1:
{{cleanup}}
 
'''Integration using complex analysis''' is a method of integrating certain functions.
 
Suppose we wanted to integrate:
 
: <math>\int e^x \cos x \, dx</math>
 
Instead of using [[Integration by parts]], we may substitute the cosine function for its Euler form: <math>\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}</math>
 
: <math>\int e^x \cdot \frac{e^{ix} + e^{-ix}}{2} \, dx</math>
 
: <math>{1\over 2} \int e^{x(1+i)} + e^{x(1-i)} \, dx</math>
 
This is far easier to integrate.