Content deleted Content added
No edit summary |
No edit summary |
||
Line 4:
== Construction ==
Group codes can be constructed by special generator matrices which resemble generator matrices of linear block codes except that the elements of those matrices are endomorphisms of the group instead of symbols from the code's alphabet. For example, consider the generator matrix
<math>
G = \begin{pmatrix} \begin{pmatrix} 0 0 \\ 1 1 \end{pmatrix} \begin{pmatrix} 0 1 \\ 0 1 \end{pmatrix} \begin{pmatrix} 1 1 \\ 0 1 \end{pmatrix} \\
|