Integration using Euler's formula: Difference between revisions

Content deleted Content added
No edit summary
No edit summary
Line 34:
<math>=\mathrm{Re}\{ \frac{1}{1+i}\ e^{(1+i)x} \}</math>
 
<math>=\mathrm{Re}\{ ( \frac{1/}{2}\ + i*\frac{1/}{2}\ ) * exp(e^x) * (\cos (x) +i*\sin( x)) \}</math>
 
=Re 1/2*exp(x)*cos(x)+1/2*i*exp(x)*sin(x)-1/2*i*exp(x)*cos(x)+1/2*exp(x)*sin(x)