Content deleted Content added
Gareth Jones (talk | contribs) |
|||
Line 17:
==Derivation==
: <math>
\begin{align}
\end{align}
▲|<math>= \sum_{j=0}^n \sum_{n_1 + \cdot\cdot\cdot + n_{m-1} = n-j, n_m = j} \prod_{i=1}^m f_i( n_i )</math>
</math>
▲|<math>= \sum_{j=0}^n f_m( j ) \sum_{n_1 + \cdot\cdot\cdot + n_{m-1} = n-j} \prod_{i=1}^{m-1} f_i( n_i )</math>
▲|<math>= \sum_{j=0}^n f_m( j ) g( m-1, n-j )</math>
: <math>g(m, 0) = 1\,</math>
to avoid affecting the product.
: <math>g(1, n) = f_1( n )\,</math>
This recursive relationship allows for the calculation of all There is a more efficient algorithm for finding <math>G(N)</math> for some network. If it is assumed that <math>f_{i>1}( n ) = c_iy_i^n</math>, then the recursive relationship can be simplified as follows:
: <math>
\begin{align}
\end{align}
▲|<math>= f_m( 0 ) g( m-1, n ) + \sum_{j=1}^n f_m( j ) g( m-1, n-j )</math>
</math>
▲|<math>= f_m( 0 ) g( m-1, n ) + y_m \sum_{j=1}^{n-1} f_m( j ) g( m-1, n-1-j)</math>
▲|<math>= f_m( 0 ) g( m-1, n ) + y_m g( m, n-1 )</math>
This simpler recursive relationship allows for the calculation of all
==Implementation==
|