Modal analysis using FEM: Difference between revisions

Content deleted Content added
m it's -> its
m simplify math notation
Line 14:
 
:<math>
[M] [\ddot U] +
\begin{bmatrix} M \end{bmatrix} \ddot{ \begin{bmatrix} U \end{bmatrix} } +
[C] [\dot U] +
\begin{bmatrix} C \end{bmatrix} \dot{ \begin{bmatrix} U \end{bmatrix} } +
[K] [U] =
\begin{bmatrix} K \end{bmatrix} \begin{bmatrix} U \end{bmatrix} =
[F]
\begin{bmatrix} F \end{bmatrix}
</math>
 
where <math> \begin{bmatrix} [M \end{bmatrix}] </math> is the mass matrix,
<math> [\ddot{ \begin{bmatrix} U \end{bmatrix} }] </math> is the 2nd time derivative of the displacement
<math> \begin{bmatrix} [U \end{bmatrix}] </math> (i.e. the acceleration), <math> [\dot { \begin{bmatrix} U \end{bmatrix} }] </math>
is the velocity, <math> \begin{bmatrix} [C \end{bmatrix}] </math> is a damping matrix,
<math> \begin{bmatrix} [K \end{bmatrix}] </math> is the stiffness matrix, and <math> \begin{bmatrix} [F \end{bmatrix}] </math>
is the force vector. The only terms kept are the 1st and 3rd terms on the left hand side
which give the following system:
 
:<math>
[M] [\ddot U] +
\begin{bmatrix} M \end{bmatrix} \ddot{ \begin{bmatrix} U \end{bmatrix} } +
[K] [U] =
\begin{bmatrix} K \end{bmatrix} \begin{bmatrix} U \end{bmatrix} =
[0]
\begin{bmatrix} 0 \end{bmatrix}
</math>
 
This is the general form of the eigensystem encountered in structural
engineering using the [[FEM]]. Further, harmonic motion is typically assumed for the
structure so that <math> [\ddot{ \begin{bmatrix} U \end{bmatrix} }] </math>
is taken to equal <math> \lambda \begin{bmatrix} [U \end{bmatrix}] </math>,
where <math> \lambda </math> is an eigenvalue,
and the equation reduces to:<ref> Clough, Ray W. and Joseph Penzien, ''Dynamics of Structures'', 2nd Ed.,
Line 43:
 
:<math>
[M] [U] \lambda +
\begin{bmatrix} M \end{bmatrix} \begin{bmatrix} U \end{bmatrix} \lambda +
[K] [U] =
\begin{bmatrix} K \end{bmatrix} \begin{bmatrix} U \end{bmatrix} =
[0]
\begin{bmatrix} 0 \end{bmatrix}
</math>
 
Line 51:
 
:<math>
[K] [U] =
\begin{bmatrix} K \end{bmatrix} \begin{bmatrix} U \end{bmatrix} =
[F]
\begin{bmatrix} F \end{bmatrix}
</math>
 
Line 63:
 
:<math>
[A] [x] =
\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} x \end{bmatrix} =
\begin{bmatrix} [x \end{bmatrix}] { \lambda }
</math>
 
Both equations can be seen as the same because if the general equation is
multiplied through by the inverse of the mass,
<math> \begin{bmatrix} [M \end{bmatrix}]^{-1} </math>,
it will take the form of the latter.<ref> Thomson, William T., '' Theory of Vibration with
Applications'', 3rd Ed., Prentice-Hall Inc., Englewood Cliffs, 1988, page 165 </ref>
It should be noted that because only the lower modes are desired, solving the system
more likely involves the equivalent of multiplying through by the inverse of the stiffness,
<math> \begin{bmatrix} [K \end{bmatrix}]^{-1} </math>, a process called [[inverse iteration]].<ref> Hughes, Thomas J. R., ''The Finite Element Method'', Prentice-Hall Inc.,
Englewood Cliffs, 1987 page 582-584 </ref>
When this is done, the resulting eigenvalues, <math> \mu </math>, relate to that of the original by:
Line 92:
considered:
 
:: 1)# Only the smallest eigenvalues and eigenvectors of the lowest modes are desired
:: 2)# The mass and stiffness matrices are sparse and highly banded
:: 3)# The system is positive definite
 
a typical prescription of solution is first to [[tridiagonal|tridiagonalize ]] the system using the
Line 103:
 
:<math>
[r^{n}] =
\begin{bmatrix} r^{n} \end{bmatrix} =
[Q] [v^{n}]
\begin{bmatrix} Q \end{bmatrix} \begin{bmatrix} v^{n} \end{bmatrix}
</math>
 
where <math> \begin{bmatrix} [r^{n} \end{bmatrix}] </math> is a Ritz vector approximately equal to
the eigenvector of the original system, <math> \begin{bmatrix} [Q \end{bmatrix}] </math> is the matrix
of Lanczos vectors, and <math> \begin{bmatrix} [v^{n} \end{bmatrix}] </math> is the <math> n^{th} </math> eigenvector
of the tridiagonal matrix.