Sub-band coding: Difference between revisions

Content deleted Content added
Mikaey (talk | contribs)
Reverted to revision 296943940 by 89.173.68.106; rv histmerge junk. (TW)
Line 14:
More clever ways of digitizing an audio signal can reduce that waste by exploiting known characteristics of the auditory system. A classic method is nonlinear PCM, such as [[mu-law]] encoding (named after a perceptual curve in auditory perception research). Small signals are digitized with finer granularity than are large ones; the effect is to add noise that is proportional to the signal strength. Sun's [[Au file format]] for sound is a popular example of mu-law encoding. Using 8-bit mu-law encoding would cut the per-channel bitrate of CD audio down to about 350 kbit/s, or about half the standard rate. Because this simple method only minimally exploits masking effects, it produces results that are often audibly poorer than the original.
 
Sub-band condigcoding is used for example in [[G.722]] codec. It uses sub-band adaptive differential pulse code modulation (SB-[[ADPCM]]) within a bit rate of 64 kbit/s. In the SB-ADPCM technique used, the frequency band is split into two sub-bands (higher and lower) and the signals in each sub-band are encoded using ADPCM.
 
==A basic SBC scheme==