Content deleted Content added
Line 31:
:<math>\begin{align}
\int \sin^2 x \cos 4x \, dx \,
&=\, \int \left(\frac{e^{ix}
&=\, -\frac{1}{8}\int \left(e^{2ix}
&=\, -\frac{1}{8}\int \left(e^{6ix}
\end{align}</math>
At this point we can either integrate directly, or we can first change the integrand to cos 6''x''
Either method gives
:<math>\int \sin^2 x \cos 4x \, dx \,=\, -\frac{1}{24}\sin 6x
==Using real parts==
|