Content deleted Content added
No edit summary |
No edit summary |
||
Line 1:
In mathematics, the '''
It is defined as follows:
: <math>\psi(z,q)=\frac{\zeta'(z+1,q)+(\psi(-z)+\gamma ) \zeta (z+1,q)}{\Gamma (-z)} \, </math>▼
▲<math>\psi(z,q)=\frac{\zeta'(z+1,q)+(\psi(-z)+\gamma ) \zeta (z+1,q)}{\Gamma (-z)}</math>
or alternatively,
: <math>\psi(z,q)=e^{- \gamma z}\frac{\partial}{\partial z}\left(e^{\gamma z}\frac{\zeta(z+1,q)}{\Gamma(-z)}\right)</math>
Several special functions can be expressed in terms of generalized polygamma function.
* <math>\psi(x)=\psi(0,x)\,</math>
* <math>\psi^{(n)}(x)=\psi(n,x)\,\,\,(n\in\mathbb{N})</math>
* <math>\Gamma(x)=e^{\psi(-1,x)+\frac 12 \ln(2\pi)}\,\,\,</math>
* <math>\zeta(z,q)=\frac{\Gamma (1-z) \left(2^{-z} \left(\psi \left(z-1,\frac{q}{2}+\frac{1}{2}\right)+\psi \left(z-1,\frac{q}{2}\right)\right)-\psi(z-1,q)\right)}{\ln(2)}</math>
:where <math>\zeta(z,q),</math> is the [[Hurwitz
* <math>B_n(q) = -\frac{\Gamma (n+1) \left(2^{n-1} \left(\psi\left(-n,\frac{q}{2}+\frac{1}{2}\right)+\psi\left(-n,\frac{q}{2}\right)\right)-\psi(-n,q)\right)}{\ln (2)}</math>
:where <math>B_n(q)</math> are [[Bernoulli polynomials]]
* <math>K(z)=\frac {e^{\frac{z-z^2}{2}-\psi(-2,z)}}A</math>
:where K(z) is [[K-function]] ana A is [[Glaisher constant]], which itself can be expressed in terms of generalized polygamma function:
*<math>A =\frac{\sqrt[36]{128{\pi}^{30}}}{\pi}e^{\frac{1}{3}+\frac{2}{3}\psi(-1,\frac 12)-\frac 13\ln(2\pi)}</math>
|