Utente:Vale maio/Sandbox3: differenze tra le versioni
Contenuto cancellato Contenuto aggiunto
Riga 297:
{{cite journal|last=Narlikar|first=J. V.|last2=Wickramasinghe|first2=N. C.|year=1967|title=Microwave Background in a Steady State Universe|journal=[[Nature (journal)|Nature]]|volume=216|pages=43–44|doi=10.1038/216043a0|bibcode=1967Natur.216...43N}}</ref>. Utilizzando questo modello, e sulla base dello studio delle caratteristiche delle linee di assorbimento negli spettri delle stelle, l'astronomo [[Andrea McKellar]] ha scritto nel 1941: "Si può calcolare che la temperatura rotazionale dello spazio interstellare è di 2 K.<ref name="dao7" /><ref>Nell'originale: ''It can be calculated that the rotational temperature of interstellar space is 2 K.''</ref>. Tuttavia, durante gli [[anni 1970]] venne stabilito che la radiazione cosmica di fondo è un residuo del Big Bang. Questo perché nuove misurazioni a una gamma di frequenze dello spettro hanno mostrato che era uno spettro di [[corpo nero]] termico, un risultato che il modello dello stato stazionario non riusciva a riprodurre<ref>
{{cite journal|last=Peebles|first=P. J. E.|coauthors=''et al.''|year=1991|title=The case for the relativistic hot big bang cosmology|journal=[[Nature (journal)|Nature]]|volume=352|pages=769–776|doi=10.1038/352769a0|bibcode=1991Natur.352..769P}}</ref>.
[[Image:Horn Antenna-in Holmdel, New Jersey.jpeg|thumb|left|L'antenna Holmdel con la quale Penzias e Wilson scoprirono la radiazione cosmica di fondo.]]
Harrison, Peebles, Yu
{{cite journal|last=Harrison|first=E. R.|year=1970|title=Fluctuations at the threshold of classical cosmology|journal=[[Physical Review D]]|volume=1|pages=2726–2730|doi=10.1103/PhysRevD.1.2726}}</ref><ref>{{cite journal|last=Peebles|first=P. J. E.|last2=Yu|first2=J. T.|year=1970|title=Primeval Adiabatic Perturbation in an Expanding Universe|journal=[[Astrophysical Journal]]|volume=162|pages=815–836|doi=10.1086/150713}}</ref><ref>
{{cite journal|last=Zeldovich|first=Y. B.|year=1972|title=A hypothesis, unifying the structure and the entropy of the Universe|journal=[[Monthly Notices of the Royal Astronomical Society]]|volume=160|pages=1P–4P|doi=|bibcode=1972MNRAS.160P...1Z}}</ref>. [[Rashid Sunyaev]]
{{cite conference|last=Doroshkevich|first=A. G.|last2=Zel'Dovich|first2=Y. B.|last3=Syunyaev|first3=R. A.|date=12–16 September 1977|title=Fluctuations of the microwave background radiation in the adiabatic and entropic theories of galaxy formation|editors=Longair, M. S. and Einasto, J. |booktitle=The large scale structure of the universe; Proceedings of the Symposium|publisher=Dordrecht, D. Reidel Publishing Co.|pages=393–404|___location=Tallinn, Estonian SSR|bibcode=1978IAUS...79..393S|accessdate=2008-12-12}} While this is the first paper to discuss the detailed observational imprint of density inhomogeneities as anisotropies in the cosmic microwave background, some of the groundwork was laid in Peebles and Yu, above.</ref>.
{{cite journal|last=Smooth|first=G. F.|coauthors=''et al.''|year=1992|title=Structure in the COBE differential microwave radiometer first-year maps|journal=[[Astrophysical Journal Letters]]|volume=396|issue=1|pages=L1–L5|doi=10.1086/186504}}</ref><ref>
{{cite journal|last=Bennett|first=C.L.|coauthors=''et al.''|year=1996|title=Four-Year COBE DMR Cosmic Microwave Background Observations: Maps and Basic Results|journal=[[Astrophysical Journal Letters]]|volume=464|pages=L1–L4|doi=10.1086/310075}}</ref>.
Inspired by the RELIKT-1/COBE results, a series of ground and balloon-based experiments measured cosmic microwave background anisotropies on smaller angular scales over the next decade. The primary goal of these experiments was to measure the scale of the first acoustic peak, which COBE did not have sufficient resolution to resolve. This peak corresponds to large scale density variations in the early universe that are created by gravitational instabilities, resulting in acoustical oscillations in the plasma.<ref>
|