Content deleted Content added
m +cat |
fix dab link |
||
Line 3:
The first result in the field was the '''Schauder fixed point theorem''', proved in 1930 by [[Juliusz Schauder]]. Quite a number of further results followed. One way in which fixed-point theorems of this kind have had a larger influence on mathematics as a whole has been that one approach is to try to carry over methods of [[algebraic topology]], first proved for finite [[simplicial complex]]es, to spaces of infinite dimension. For example, the research of [[Jean Leray]] who founded [[sheaf theory]] came out of efforts to extend Schauder's work.
The '''Schauder fixed point theorem''' states, in one version, that if ''C'' is a [[nonempty]] [[
The '''Tikhonov (Tychonoff) fixed point theorem''' is applied to any [[locally convex topological vector space]] ''V''. It states that for any non-empty compact convex set ''X'' in ''V'', and continuous function
|