Content deleted Content added
No edit summary |
|||
Line 38:
This is in general does not possess a closed form expression, so it is usual to use its asymptotic approximation (AMISE) as a proxy
<math>\operatorname{AMISE} (\bold{H}) = n^{-1} |\bold{H}|^{-1/2} R(K) + \tfrac{1}{4} m_2(K)^2
(\operatorname{vec}^T \bold{H}) \bold{R} (\operatorname{vec} \, \operatorname{D}^2 f) (\operatorname{vec} \bold{H}) </math>
where
<ul>
<li><math>R(K) = \int K(\bold{x})^2 \, d\bold{x}</math>. For the normal kernel <math>K</math>, <math>R(K) = (4 \pi)^{-d/2}</math>
<li><math>\operatorname{D}^2 f</math> is the <em>d x d</em> Hessian matrix of second order partial derivatives of <math>f</math>
<li><math>\bold{R}(\operatorname{D}^2 f) = \int (\operatorname{vec} \, \operatorname{D}^2 f (\bold{x})) (\operatorname{vec} \, \operatorname{D}^2 f (\bold{x}))^T \, d\bold{x}</math>
<li>vec is the vector operator which stacks the columns of matrix into a single vector e.g.
<math>\operatorname{vec} \begin{bmatrix} a & c & e\\ b & d & f\end{bmatrix} = \begin{bmatrix} a & b & c & d & e & f\end{bmatrix}^T</math>
</ul>
<math>\operatorname{MISE} (\bold{H}) = \operatorname{AMISE} (\bold{H}) + o(n^{-1} |\bold{H}|^{-1/2}) + O(\operatorname{tr} \, \bold{H}^2)</math>
where
The many different varieties of bandwidth selectors arise from the different estimators of the MISE or AMISE. We concentrate on two classes of selectors which have been shown to be the most widely applicable in practise: smoothed cross validation and plug-in selectors.
Line 47 ⟶ 58:
=== Smoothed cross validation ===
== References ==
|