Content deleted Content added
erlang distribution |
wikilinks, tidy, {{unreferenced}} |
||
Line 1:
In [[statistics]] and [[computer software]], a '''convolution random number generator''' is a type of [[random number generator]] that can be used to generate [[random
A number of distributions can be expressed in terms of the (possibly weighted) sum of two or more [[random
== Example ==
Consider the problem of generating a random number correspobding to a random variable with an [[Erlang distribution]], <math>X\ \sim \operatorname{Erlang}(k, \theta)</math>
Notice that:
:<math>\operatorname{E}[X] = \frac{1}{k \theta} + \frac{1}{k \theta} + \cdots + \frac{1}{k \theta} = \frac{1}{\theta} .</math>
One can now generate <math>\operatorname{Erlang}(k, \theta)</math> samples using a random number generator for the exponential distribution:
if <math>X_i\ \sim \
{{unreferenced|date=November 2010}}
[[Category:Non-uniform random numbers]]
|